por Bruno G Carneiro » Sex Jun 08, 2012 20:54
Estou estudando equações diferenciais e para solucionar algumas é necessário encontrar algumas raízes em números complexos.
O livro deu um exemplo e passou algumas questões, mas uma delas foge o padrão do exemplo e eu não estou conseguindo resolver.
Equações Diferenciais, Boyce e DiPrima, Seção 4.2, Ex 8
Determine a raiz do número complexo dado]



Como prosseguir? Não sei como calcular o cos e o sen de 7/8 pi...
Resposta do livro:

-
Bruno G Carneiro
- Novo Usuário

-
- Mensagens: 6
- Registrado em: Sex Mai 11, 2012 15:06
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Ciência da Computação
- Andamento: cursando
por fraol » Qua Jun 20, 2012 22:35
Boa noite,
O desenvolvimento de

é o seguinte:
O número complexo é

, então:
seu módulo é

e
seu argumento é

.
Do Teorema de Moivre vem que:
![(1 -i)^{\frac{1}{2}} = {(2^{\frac{1}{2}})^{\frac{1}{2}}} \left[ cos(- \frac{\frac{\pi}{4}}{\frac{1}{2}}) + i sen(- \frac{\frac{\pi}{4}}{\frac{1}{2}}) \right] = 2^{\frac{1}{4}} \left[ cos(- \frac{\pi}{8} ) + i sen(- \frac{\pi}{8} ) \right] (1 -i)^{\frac{1}{2}} = {(2^{\frac{1}{2}})^{\frac{1}{2}}} \left[ cos(- \frac{\frac{\pi}{4}}{\frac{1}{2}}) + i sen(- \frac{\frac{\pi}{4}}{\frac{1}{2}}) \right] = 2^{\frac{1}{4}} \left[ cos(- \frac{\pi}{8} ) + i sen(- \frac{\pi}{8} ) \right]](/latexrender/pictures/f6c287b03bbe475a54a999b5f7efb503.png)
.
Pela Relação de Euler temos que
![\left[ cos(- \frac{\pi}{8}) + i sen(- \frac{\pi}{8}) \right] = e^{ - i \frac{\pi}{8}} \left[ cos(- \frac{\pi}{8}) + i sen(- \frac{\pi}{8}) \right] = e^{ - i \frac{\pi}{8}}](/latexrender/pictures/3fefbd69e0c86649186473151f871d12.png)
.
Agora juntemos os dois últimos resultados e chegamos a:

.
.
-
fraol
- Colaborador Voluntário

-
- Mensagens: 392
- Registrado em: Dom Dez 11, 2011 20:08
- Localização: Mogi das Cruzes-SP
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática
- Andamento: formado
Voltar para Números Complexos
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Número Complexo] Exercício básico...
por Vennom » Sáb Jul 21, 2012 06:57
- 8 Respostas
- 18819 Exibições
- Última mensagem por Russman

Seg Set 10, 2012 15:56
Números Complexos
-
- [módulo do número complexo]
por JKS » Qui Jun 20, 2013 01:56
- 1 Respostas
- 2951 Exibições
- Última mensagem por MateusL

Qui Jul 18, 2013 19:49
Números Complexos
-
- Equação de número complexo
por YuriFreire » Seg Set 01, 2014 21:44
- 3 Respostas
- 4967 Exibições
- Última mensagem por adauto martins

Seg Set 22, 2014 21:19
Números Complexos
-
- somatória com número complexo
por ezidia51 » Qua Abr 04, 2018 17:44
- 3 Respostas
- 10334 Exibições
- Última mensagem por Gebe

Qui Abr 05, 2018 13:32
Números Complexos
-
- Numero Complexo, resistência e reatância
por Fran Ianhez » Ter Set 27, 2016 23:07
- 0 Respostas
- 6145 Exibições
- Última mensagem por Fran Ianhez

Ter Set 27, 2016 23:07
Números Complexos
Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.