• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Raiz número complexo] Exercício fora do padrão

[Raiz número complexo] Exercício fora do padrão

Mensagempor Bruno G Carneiro » Sex Jun 08, 2012 20:54

Estou estudando equações diferenciais e para solucionar algumas é necessário encontrar algumas raízes em números complexos.

O livro deu um exemplo e passou algumas questões, mas uma delas foge o padrão do exemplo e eu não estou conseguindo resolver.

Equações Diferenciais, Boyce e DiPrima, Seção 4.2, Ex 8

Determine a raiz do número complexo dado]
(1-i)^{\frac{1}{2}}

1-1i = e^{7\frac{pi}{4} + 2m*pi}
(1-1i)^{\frac{1}{2}} = cos(7 \frac{pi}{8} + m*pi) + i sen(7 \frac{pi}{8} + m*pi)

Como prosseguir? Não sei como calcular o cos e o sen de 7/8 pi...

Resposta do livro: 2^{1/4}e^{(-pi*i)/8} , 2^{1/4}e^{(7pi*i)/8}
Bruno G Carneiro
Novo Usuário
Novo Usuário
 
Mensagens: 6
Registrado em: Sex Mai 11, 2012 15:06
Formação Escolar: GRADUAÇÃO
Área/Curso: Ciência da Computação
Andamento: cursando

Re: [Raiz número complexo] Exercício fora do padrão

Mensagempor fraol » Qua Jun 20, 2012 22:35

Boa noite,

O desenvolvimento de (1 -i)^{\frac{1}{2}} é o seguinte:

O número complexo é 1 - i, então:

seu módulo é \sqrt{1^2+(-1)^2} = \sqrt{2} = 2^{\frac{1}{2}} e

seu argumento é \theta = - \frac{\pi}{4}.

Do Teorema de Moivre vem que: (1 -i)^{\frac{1}{2}} = {(2^{\frac{1}{2}})^{\frac{1}{2}}} \left[ cos(- \frac{\frac{\pi}{4}}{\frac{1}{2}}) + i sen(- \frac{\frac{\pi}{4}}{\frac{1}{2}}) \right] = 2^{\frac{1}{4}} \left[ cos(- \frac{\pi}{8} ) + i sen(- \frac{\pi}{8} ) \right].

Pela Relação de Euler temos que \left[ cos(- \frac{\pi}{8}) + i sen(- \frac{\pi}{8}) \right] = e^{ - i \frac{\pi}{8}}.

Agora juntemos os dois últimos resultados e chegamos a:

(1 -i)^{\frac{1}{2}} = 2^{\frac{1}{4}} e^{- i \frac{\pi}{8}}.


.
fraol
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 392
Registrado em: Dom Dez 11, 2011 20:08
Localização: Mogi das Cruzes-SP
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: formado


Voltar para Números Complexos

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}