• Anúncio Global
    Respostas
    Exibições
    Última mensagem

demonstração por indução e algoritmo euclides

demonstração por indução e algoritmo euclides

Mensagempor gasparina nunes » Ter Abr 10, 2012 22:37

Não estou conseguindo resolver a seguinte questão:
Mostre por indução se 1³ + 2³ + 3³ + ... + n³ = [ (1/2).n.(n+1)] é verdadeiro ou falso.

Gostaria de saber se a resolução dos seguintes algoritmo de Euclides para divisão em Z está correto:

A) a=-20 e b=-5
R--20=3.(-5)+5=-20

B) a=-20 e b=3
R--20=-7.3+1=-20

C) a=-20 e b=-6
R -20=3.(-6)+2=-20

D) a=-20 e b=6
R -20=-4.6+4=-20
gasparina nunes
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Sáb Abr 07, 2012 23:17
Formação Escolar: GRADUAÇÃO
Área/Curso: matematica
Andamento: cursando

Voltar para Números Complexos

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.