• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Física

Física

Mensagempor Mi_chelle » Qua Abr 13, 2011 17:52

Não sei se escolhi o tópico certo, mas aí vai minha dúvida:

Um barco atravessa um rio de margens paralelas, de largura d=4Km. Devido à correnteza, o componente da velocidade do barco ao longo das margnes é de Va = 0,5Km/h em relação às margens. Na direção perpendicular às margens o componente da velocidadde é de Vb= 2Km/h.
a)Quanto tempo o barco leva para atravessar o rio?
b)Ao completar a travessia, qual é o deslocamento do barco na direção das margens?

Tentei resolver da seguinte maneira:
a) V²= a²+ b²
V²= (0,5)² + (2)²
V²= 0,25 + 4
V²= 4,25
V = 2 m/s

V = ?S / ?t
2 = 4 / ?t
2 ?t = 4
?t = 4 / 2
?t = 2 h

b)Vbarco = D / T
0,5 = D / 2
D = 1 km

Porém, no gabarito as respostas são as seguintes: a)8h e b)16,5Km.
Mi_chelle
Usuário Ativo
Usuário Ativo
 
Mensagens: 21
Registrado em: Seg Mar 28, 2011 17:35
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Tec. Química
Andamento: formado

Re: Física

Mensagempor FilipeCaceres » Qua Abr 13, 2011 20:43

As suas respostas estão certas, você deve ter pego o gabarito de uma outra questão.

Você não precisava ter calcula a resultante (v_r), observe que independente da velocidade da água a velocidade vertical do barco sempre será o mesmo, assim temos
t=\frac{d}{v_b}=\frac{4}{2}=2h

E como a velocidade da água também é constante, o tempo que ele levou para atravessar será o mesmo tempo de arraste, logo o deslocamento será
d=t.v_a=2.0,5=1km

Espero que entenda.
FilipeCaceres
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 351
Registrado em: Dom Out 31, 2010 21:43
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Tec. Mecatrônica
Andamento: formado

Re: Física

Mensagempor Mi_chelle » Qua Abr 13, 2011 23:42

Acho que o gabarito está errado mesmo. Pelo menos, fiz a coisa certa então!! Obrigada pela ajuda!!
Mi_chelle
Usuário Ativo
Usuário Ativo
 
Mensagens: 21
Registrado em: Seg Mar 28, 2011 17:35
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Tec. Química
Andamento: formado

Re: Física

Mensagempor Mi_chelle » Qui Abr 14, 2011 00:07

Aproveitando o tópico de física, gostaria de fazer uma outra pergunta:

As bicicletas possuem uma corrente que liga uma coroa dentada dianteira, movimentada pelos pedais, a uma coroa localizada no eixo da roda traseira.
O número de voltas dadas pela roda traseira, a cada pedalada, depende do tamanho relativo dessas coroas.
a) Suponhando que o diâmetro da coroa dianteira seja D2=30cm, o da coroa traseira, D1=10cm, e o diâmetro da roda traseira seja Dr= 80cm, calcule o deslocamento aproximado efetuado pela bicicleta quando o ciclista dá uma pedalada (considere pi=3).
b)Caso a bicicleta possua marchas , cada marcha é uma combinação de uma das coroas traseiras, qual é o possivel total de marchas, tendo em vista que ela possui duas coroas dianteiras e cinco traseiras?

Resposta Gabarito: a)2,4m e b)10 marchas.

A questão b, imaginando que cada marcha seria a combinação de uma das coroas traseira, com uma da dianteira fiz:
2x15=10 marchas.

Poirém a questão a, não consigo desenrolar, comecei calculando o deslocamento da coroa dianteira:

Variação angular= Deslocamento/ Raio
Deslocamento= 3x15
Deslocamento= 45

Não sei se iniciei corretamente e não consigo imaginar o que fazer depois disso.
Mi_chelle
Usuário Ativo
Usuário Ativo
 
Mensagens: 21
Registrado em: Seg Mar 28, 2011 17:35
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Tec. Química
Andamento: formado


Voltar para Números Complexos

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D