• Anúncio Global
    Respostas
    Exibições
    Última mensagem

5/303

5/303

Mensagempor Colton » Qui Mai 12, 2011 12:29

+
+


Estou me debatendo com o seguinte exercício (que vou digitar sem símbolos):
(Exercício 303 de Fundamentos de Matemática Elementar vol. 5, 7ª edição, página 75.)

Determine o valor de A(n) = somatório de p=0 até n de (Cn,p)[2^(p)3^(n-p)-4^p], para todo n > 0.
Entendo que o somatório proposto é igual a 2^n.
Entendo que [2^(p)3^(n-p)-4^p]pode ser reescrito como (2/3)^p3^n-4^p
Mas não sei o que fazer com (2^n)[(2/3)^p3^n-4^p] para obter A(n) = 0, que é o gabarito.

Tem alguém aí para me dar uma ajudinha?

Sds

Colton

+
+
Colton
Usuário Ativo
Usuário Ativo
 
Mensagens: 19
Registrado em: Dom Jul 25, 2010 17:14
Formação Escolar: GRADUAÇÃO
Área/Curso: Administração
Andamento: formado

Re: 5/303

Mensagempor LuizAquino » Ter Mar 13, 2012 20:55

Sei que essa dúvida é antiga (foi enviada no dia 12 de maio de 2011), mas segue a solução abaixo.

Colton escreveu:Estou me debatendo com o seguinte exercício (que vou digitar sem símbolos):
(Exercício 303 de Fundamentos de Matemática Elementar vol. 5, 7ª edição, página 75.)

Determine o valor de A(n) = somatório de p=0 até n de (Cn,p)[2^(p)3^(n-p)-4^p], para todo n > 0.
Entendo que o somatório proposto é igual a 2^n.
Entendo que [2^(p)3^(n-p)-4^p]pode ser reescrito como (2/3)^p3^n-4^p
Mas não sei o que fazer com (2^n)[(2/3)^p3^n-4^p] para obter A(n) = 0, que é o gabarito.


Primeiro, vamos escrever o exercício usando a notação adequada:

A(n) = \sum_{p=0}^n {n \choose p}\left(2^p 3^{n-p} - 4^p\right)

Agora, note que:

A(n) = \sum_{p=0}^n {n \choose p}\left(2^p 3^{n-p} - 4^p 1^{n - p}\right)

A(n) = \sum_{p=0}^n {n \choose p} 2^p 3^{n-p} - \sum_{p=0}^n {n \choose p} 4^p 1^{n - p}

A(n) = (2 + 3)^n - (4  + 1)^n

A(n) = 5^n - 5^n

A(n) = 0
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Binômio de Newton

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.