• Anúncio Global
    Respostas
    Exibições
    Última mensagem

TRIANGULO DE PASCAL

TRIANGULO DE PASCAL

Mensagempor natanskt » Sex Dez 03, 2010 17:00

OS ELEMENTOS DE UMA FILA DO TRIANGULO DE PASCAL SÃO;
1 8 a b 70 56 28 c 1
determine a,b e c

tentei todas as regras,mais tem um truque aqui,alguem aewwwww

OUTRA DUVIDA AQUI.
(8)-(8)+(8)-(8)
EM BAIXO VAI DO 0 ATÉ O 3,COMO FAZER RAPIDO?SE TIVER MUITO EU TENHO QUE FAZER UM POR UM?POR CAUSA DO MENOS?
natanskt
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 176
Registrado em: Qua Out 06, 2010 14:56
Formação Escolar: ENSINO MÉDIO
Área/Curso: nenhum
Andamento: cursando

Re: TRIANGULO DE PASCAL

Mensagempor alexandre32100 » Sex Dez 03, 2010 17:25

Dá pra ver que corresponde a 8ª linha: o segundo termo é oito (pode ver que sempre corresponde ao número da linha) e esta linha tem 9 entradas, como na n-ésima linha temos n+1 entradas, sabemos que esta é a oitava.
As entradas desta linha são:
\dbinom{8}{0},\dbinom{8}{1},\dbinom{8}{2},\dbinom{8}{3},\dbinom{8}{4},\dbinom{8}{5},\dbinom{8}{6},\dbinom{8}{7},\dbinom{8}{8}
no caso a é a terceira, b a quarta e c a oitava entrada, respectivemente os binômios \dbinom{8}{2}, \dbinom{8}{3} \text{ e }\dbinom{8}{7}, basta só caculá-los.
alexandre32100
 

Re: TRIANGULO DE PASCAL

Mensagempor natanskt » Seg Dez 06, 2010 10:43

valeu manolo.
nunca pensei nisso.
agora eu intendi.
tambem note que
1
1 1
1 2 1
1 3 3 1
1 4 6 4 1
1 5 10 10 1

olhe na segunda coluna 1,2,3,4,5, quer dizer q2ue o numero que tiver aqui,é o numero de linhas?
natanskt
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 176
Registrado em: Qua Out 06, 2010 14:56
Formação Escolar: ENSINO MÉDIO
Área/Curso: nenhum
Andamento: cursando


Voltar para Binômio de Newton

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}