• Anúncio Global
    Respostas
    Exibições
    Última mensagem

termo independente

termo independente

Mensagempor cristina » Sex Ago 20, 2010 23:47

Boa noite estou precisando de ajuda

O termo independente de x no desenvolvimento de \left(\frac{1}{{x}^{2}} -\sqrt[4]{x} \right){}^{18} é:

se alguem puder me ajudar agradeço
cristina
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 82
Registrado em: Qua Set 02, 2009 17:49
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura/ matematica
Andamento: cursando

Re: termo independente

Mensagempor VtinxD » Dom Ago 22, 2010 01:50

Para achar o termo independente desta função binomial a forma que conheço seria usar o termo geral de um binomio.Onde o termo independente é aquele onde o x tem coeficiente igual a zero.

f(x)={\left(1/{x}^{2} - \sqrt[4]{x} \right)}^{18}
Onde T é o termo geral da função f(x):
{T}_{n+1}= \frac{18!}{n!\left(18-n \right)!}.  \left({1/{x}^{2}} \right)^{18-n} .\left({-\sqrt[4]{x}} \right)^{n}

Para achar o termo indepente,primeiro temos que achar qual termo ,logo o valor de n :

\left({1/{x}^{2}} \right)^{18-n}. \left({-\sqrt[4]{x}} \right)^{n} = {x}^{0}

Colocando de uma forma mais amigavel:

{x}^{-2\left(18-n \right)} . {\left(-x \right)}^{\frac{n}{4}} = {x}^{0}

Na multiplicação se soma os espoentes e nesse caso os iguala a zero para que igualdade se torne valida.
{x}^{\frac{n}{4}-2\left(18-n \right)} = {x}^{0} \Rightarrow \frac{n}{4}-2(18-n)=0 \Rightarrow n=16

Substituindo na formula do termo geral:

{T}_{17}=\frac{18!}{16!.2!}.{x}^{0}\Rightarrow {T}_{17}=63`

É o meu primeiro post e foi bem complicado trabalhar com o editor de formulas, espero ter ajudado e tambem que esteja certo :lol: .
VtinxD
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 64
Registrado em: Dom Ago 15, 2010 18:29
Formação Escolar: ENSINO MÉDIO
Área/Curso: Bacharelado em Matematica
Andamento: cursando

Re: termo independente

Mensagempor cristina » Dom Ago 22, 2010 10:48

Obrigada pela a ajuda
Não tenho a resposta, pois é aberto, mas depois te digo se esta certo.
cristina
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 82
Registrado em: Qua Set 02, 2009 17:49
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura/ matematica
Andamento: cursando


Voltar para Binômio de Newton

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}