• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Provar igualdade sem recorrer à Indução Matemática

Provar igualdade sem recorrer à Indução Matemática

Mensagempor EREGON » Ter Abr 14, 2015 06:29

Bom dia,

estou com dificuldades em efectuar esta prova sem recorrer à IM, no entanto tendo como suporte as matérias já dadas, como:

1 - Funções Injetivas, sobrejetivas e bijeticvas.
2 - Cardinalidades.
3 - Coeficientes binomiais.
4 - Permutações e combinações.
5 - Binomio de Newton, triangulo de pascal, lei de simetria, etc.

Tentei fazer este desenvolvimento que não sei se está correto, mas depois não consegui avançar mais *-) :
Anexos
CodeCogsEqn.gif
CodeCogsEqn.gif (3.02 KiB) Exibido 3410 vezes
EREGON
Usuário Ativo
Usuário Ativo
 
Mensagens: 12
Registrado em: Seg Nov 10, 2014 16:00
Formação Escolar: ENSINO MÉDIO
Área/Curso: informatica
Andamento: cursando

Re: Provar igualdade sem recorrer à Indução Matemática

Mensagempor EREGON » Qui Abr 16, 2015 14:07

Olá boa tarde,

alguém me poderá auxiliar neste exercício?

Obrigado.
EREGON
Usuário Ativo
Usuário Ativo
 
Mensagens: 12
Registrado em: Seg Nov 10, 2014 16:00
Formação Escolar: ENSINO MÉDIO
Área/Curso: informatica
Andamento: cursando

Re: Provar igualdade sem recorrer à Indução Matemática

Mensagempor e8group » Sex Abr 17, 2015 23:12

Podemos generalizar , computar \sum^n  k^\alpha \binom{n}{k} recursivamente em função das somas ]\sum^n  k^\zeta \binom{n}{k}   ;   0 \leq \zeta  < \alpha .

Defina , para \alpha , n \in \mathbb{Z}_{\geq 0 , \Lambda_n(\alpha) := \sum_{k=1}^n k^\alpha \binom{n}{k} .

Veja que \Lambda_n(0) =  2^n -1 (verifique ) . Fixe \mathbb{Z}_{\geq 0 }\ni n, \alpha > 0 arbitrariamente .

Para cada k \in \{1, \hdots , n \} , veja que


k^\alpha \binom{n}{k} = k^\alpha \frac{n!}{(n-k)!k!} = k^{\alpha -1}\frac{n!}{(n-k)!(k-1)!}  = n k^{\alpha -1}\frac{(n-1)!}{(n-k)!(k-1)!} =  n k^{\alpha -1}\frac{(n-1)!}{((n-1)-(k-1) )!(k-1)! } =  n k^{\alpha -1} \binom{n-1}{k-1} .

Pondo , p = k -1 , temos k^\alpha \binom{n}{k} =  n (p+1)^{\alpha -1 } \binom{n-1}{p}  ,     p \in \{0, \hdots , n-1\} .

Como ,

(p+1)^{\alpha -1 }  = \sum_{\zeta = 0}^{\alpha -1} p^\zeta \binom{\alpha -1}{\zeta } , substituindo na expressão acima , temos


k^\alpha \binom{n}{k}  = n \sum_{\zeta = 0}^{\alpha -1} p^\zeta \binom{\alpha -1}{\zeta } \binom{n-1}{p}  , p \in \{0, \hdots , n-1\} . Finalmente , substituindo esta expressão na soma , vem

\sum_{k=1}^n k^\alpha \binom{n}{k} =  \sum_{p=0}^{n-1}   n \sum_{\zeta = 0}^{\alpha -1} p^\zeta \binom{\alpha -1}{\zeta } \binom{n-1}{p}  = n \sum_{\zeta = 0}^{\alpha -1} \left(\sum_{p=0}^{n-1}  p^\zeta  \binom{n-1}{p}   \right) \binom{\alpha -1}{\zeta } = n+ n\sum_{\zeta = 0}^{\alpha -1} \left(\sum_{p=1}^{n-1}  p^\zeta  \binom{n-1}{p}   \right) \binom{\alpha -1}{\zeta }  = n+n\sum_{\zeta = 0}^{\alpha -1}  \Lambda_{n-1}(\zeta) \binom{\alpha -1}{\zeta } , ou seja


\Lambda_n(\alpha) = \boxed{n+ n \sum_{\zeta = 0}^{\alpha -1}  \Lambda_{n-1}(\zeta) \binom{\alpha -1}{\zeta }} .

Agora somos capazes facilmente , de computar por exemplo \Lambda_n(1) . De acordo com a formula acima ,


\Lambda_n(1) =n+ n \sum_{\zeta = 0}^{0}  \Lambda_{n-1}(\zeta) \binom{0}{\zeta }  = n+ n \Lambda_{n-1}(0) =  n+ n (2^{n-1} -1) = n2^{n-1} .

o exercício é um corolário do resultado acima ... Segue-se então que

\sum_{k=1}^n k^2 \binom{n}{k} =  \Lambda_n(2) = n+ n \sum_{\zeta = 0}^{1}  \Lambda_{n-1}(\zeta) \binom{1}{\zeta } = n+ n( \Lambda_{n-1}(0)+\Lambda_{n-1}(1) )  = n( 2^{n-1} + (n-1)2^{n-2}) =  n(n+1)2^{n-2} .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Binômio de Newton

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?