• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Binomio

Binomio

Mensagempor cristina » Dom Ago 22, 2010 13:45

1 - No desenvolvimento do binomio \left(2x + ky \right){}^{n}, segundo potencias decrescentes de x, o terceiro termo é 80 {x}^{3}{y}^{2}, n pertence N e k > o. Então o valor n + k é:

2- sejam 2 retas paralelas r e s, tomando-se 5 pontos em r e 6 pontos em s, quantas retas esses 11 pontos determinam?

Se alguem puder me ajudar agradeço.
cristina
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 82
Registrado em: Qua Set 02, 2009 17:49
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura/ matematica
Andamento: cursando

Re: Binomio

Mensagempor VtinxD » Dom Ago 22, 2010 14:13

1°Problema-
Em problemas deste tipo é bom usar o termo geral de um binomio.

{T}_{p+1}=\frac{n!}{p!(n-p)!}.{(2x)}^{n-p}.{(ky)}^{p} \Rightarrow {T}_{p+1}=\frac{n!}{p!(n-p)!} . {2}^{n-p}.{x}^{n-p}.{k}^{p}.{y}^{p}

Logo:
{y}^{p}={y}^{2} \Rightarrow p=2
{x}^{n-p}={x}^{3} \Rightarrow (n-p)=3 \Rightarrow n=5

Agora só falta achar o valor de k ,e como já possuimos o valor de n e p teremos só que analisar o resto da equação:

\frac{5!}{2!.3!}.{2}^{5}.{k}^{2} = 80 \Rightarrow {k}^{2}=\frac{1}{4} \Rightarrow k= \frac{1}{2}

[tex]k + n = 5 + \frac{1}{2} \Rightarrow k + n = \frac{11}{2}

Espero ter ajudado e que esteja certo :-D .
VtinxD
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 64
Registrado em: Dom Ago 15, 2010 18:29
Formação Escolar: ENSINO MÉDIO
Área/Curso: Bacharelado em Matematica
Andamento: cursando

Re: Binomio

Mensagempor cristina » Qui Ago 26, 2010 11:42

Olá
As possiveis alternativas são:
a) 6
b) 5
c) 8
d) 9
e) 7

nesse caso não consegui entender, o que esta errado.
abs
cristina
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 82
Registrado em: Qua Set 02, 2009 17:49
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura/ matematica
Andamento: cursando

Re: Binomio

Mensagempor Douglasm » Qui Ago 26, 2010 13:20

Na verdade foi só uma falta de atenção ao finalizar o problema. VtinxD fez:

\frac{5!}{2!.3!} . 2^5 . k^2 = 80

O erro foi só elevar dois a quinta, quando na verdade ele deveria ser elevado ao cubo. Logo:

\frac{5!}{2!.3!} . 2^3 . k^2 = 80 \;\therefore\; k = 1

Isso faz com que a resposta seja letra "a", 6.
Avatar do usuário
Douglasm
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 270
Registrado em: Seg Fev 15, 2010 10:02
Formação Escolar: ENSINO MÉDIO
Andamento: formado


Voltar para Binômio de Newton

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59