Para achar o termo independente desta função binomial a forma que conheço seria usar o termo geral de um binomio.Onde o termo independente é aquele onde o x tem coeficiente igual a zero.
![f(x)={\left(1/{x}^{2} - \sqrt[4]{x} \right)}^{18} f(x)={\left(1/{x}^{2} - \sqrt[4]{x} \right)}^{18}](/latexrender/pictures/555f1620520737bf8dd4b8e1237332b9.png)
Onde T é o termo geral da função f(x):
![{T}_{n+1}= \frac{18!}{n!\left(18-n \right)!}. \left({1/{x}^{2}} \right)^{18-n} .\left({-\sqrt[4]{x}} \right)^{n} {T}_{n+1}= \frac{18!}{n!\left(18-n \right)!}. \left({1/{x}^{2}} \right)^{18-n} .\left({-\sqrt[4]{x}} \right)^{n}](/latexrender/pictures/e6095ef015bd8dfcf5b6c11e198db2f2.png)
Para achar o termo indepente,primeiro temos que achar qual termo ,logo o valor de n :
![\left({1/{x}^{2}} \right)^{18-n}. \left({-\sqrt[4]{x}} \right)^{n} = {x}^{0} \left({1/{x}^{2}} \right)^{18-n}. \left({-\sqrt[4]{x}} \right)^{n} = {x}^{0}](/latexrender/pictures/bbe16b7c9c701b9554e816eab8ce0f2a.png)
Colocando de uma forma mais amigavel:

Na multiplicação se soma os espoentes e nesse caso os iguala a zero para que igualdade se torne valida.

Substituindo na formula do termo geral:

`
É o meu primeiro post e foi bem complicado trabalhar com o editor de formulas, espero ter ajudado e tambem que esteja certo

.