• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Somatórios

Somatórios

Mensagempor Douglasm » Ter Fev 23, 2010 11:17

Eu resolvi a seguinte questão e encontrei uma resposta diferente do gabarito. Eis a questão:

Calcule \sum_{k=0}^n (k+1) C_n ^k.

Minha resolução:

\sum_{k=0}^n (k+1) C_n ^k = \sum_{k=0}^n (k+1).\sum_{k=0}^n C_n ^k

\sum_{k=0}^n (k+1) C_n ^k = 2^n \sum_{k=0}^n C_{k+1} ^1

(Os resultados são obtidos através dos teoremas das colunas e das linhas do triângulo de Pascal, respectivamente.)

\sum_{k=0}^n (k+1) C_n ^k = C_{n+2} ^2 . 2^n = (n+2)(n+1).2^{n-1}

No gabarito a resposta é somente (n+2).2^{n-1}

Será que estou fazendo errado mesmo ou o gabarito esqueceu o (n+1)?
Avatar do usuário
Douglasm
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 270
Registrado em: Seg Fev 15, 2010 10:02
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Somatórios

Mensagempor Mathmatematica » Dom Jun 06, 2010 21:44

Olá Douglas!
Infelizmente você está fazendo errado. A passagem \sum^n_{k=0}(k+1)C^k_{n}=\sum^n_{k=0}(k+1)\sum^n_{k=0}C^k_n está errada. Não entendi muito bem o que é C^k_n (não seria C^n_k?).
Mas voltando ao erro: o fator (k+1) possui um k e o k no somatório está variando. Da mesma forma, o fator C^k_n também possui um k e, no somatório, o k varia. Como o que eu sei sobre somatório é pouco vou tentar explicar com um contra-exemplo para aquela passagem:

\sum^n_{k=1}k^2=1^2+2^2+3^2+ \cdots + n^2

\left(\sum^n_{k=1}k\right)^2=(1+2+3+4+5+ \cdots n)^2

Como podemos perceber \sum^n_{k=1}k^2\ne \left(\sum^n_{k=1}k\right)^2. De acordo com a sua passagem teríamos:

\sum^n_{k=1}k^2=\sum^n_{k=1}k.k=\sum^n_{k=1}k\sum^n_{k=1}k=\left(\sum^n_{k=1}k\right)^2

Espero que tenha entendido. (Vou estudar mais o assunto.... Preciso explicar melhor!!!)
Mathmatematica
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 25
Registrado em: Sex Jun 04, 2010 23:53
Formação Escolar: ENSINO MÉDIO
Área/Curso: Bacharelado
Andamento: cursando

Re: Somatórios

Mensagempor Douglasm » Dom Jun 06, 2010 22:42

Olá Mathmatematica. Obrigado por trazer a tona essa questão (ela é de 3 meses atrás =P), pois hoje consegui resolvê-la, graças a Gauss! Vou postar aqui para o caso de alguém se interessar:

\sum_{k=0}^n (k+1) C_k^n  = 1.(C_0^n) + 2.(C_1^n) + ... + n.(C_{n-1}^n) + (n+1).(C_n^n)

Lembrando que:

C_0^n = C_n^n \; ; \; C_1^n = C_{n-1}^n \; (...)

Somando os termos nas extremidades:

\sum_{k=0}^n (k+1) C_k^n  = \frac{(n+2) \sum_{k=0}^n C_k^n}{2} \therefore

\sum_{k=0}^n (k+1) C_k^n  = (n+2)2^{n-1}

Até a próxima.
Avatar do usuário
Douglasm
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 270
Registrado em: Seg Fev 15, 2010 10:02
Formação Escolar: ENSINO MÉDIO
Andamento: formado


Voltar para Binômio de Newton

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: [calculo] derivada
Autor: beel - Seg Out 24, 2011 16:59

Para derivar a função

(16-2x)(21-x).x

como é melhor fazer?
derivar primeiro sei la, ((16-2x)(21-x))' achar o resultado (y)
e depois achar (y.x)' ?


Assunto: [calculo] derivada
Autor: MarceloFantini - Seg Out 24, 2011 17:15

Você poderia fazer a distributiva e derivar como um polinômio comum.


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:26

Funciona da mesma forma que derivada de x.y.z, ou seja, x'.y.z+x.y'.z+x.y.z' substitui cada expressão pelas variáveis e x',y' e z' é derivada de cada um


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:31

derivada de (16-2x)=-2
derivada de (21-x)=-1
derivada de x=1
derivada de (16-2x)(21-x)x=-2.(21-x)x+(-1).(16-2x)x +1.(16-2x)(21-x)