por Raphael Moraes » Ter Dez 31, 2013 10:46
(UFPA) Sendo C p,n a combinação de n elementos tomados p a p, e T p+1= (-1)^p . C p,n - o termo geral de um binômio de Newton, podemos afirmar que a soma de todos os termos desse binômio é igual a:
A) 0
B) 1^n
C) (-1)^n
D) 2^n
E) (-2)^n
Comentários: Utilizei a fórmula da análise combinatória e fui realizando as operações, porém, não compreendi muito bem essa parte que pede a soma de todos os termos do binômio.
-
Raphael Moraes
- Novo Usuário

-
- Mensagens: 1
- Registrado em: Ter Dez 31, 2013 10:39
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: Ensino médio e Automação Industrial
- Andamento: cursando
por Guilherme Pimentel » Qui Jan 16, 2014 08:05
Observe que:

opção [A]
-
Guilherme Pimentel
- Usuário Ativo

-
- Mensagens: 20
- Registrado em: Dom Jan 12, 2014 19:17
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática/Economia
- Andamento: formado
Voltar para Binômio de Newton
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Aulas de Cálculo 2 (Projeto Newton - UFPA)]
por raimundoocjr » Sáb Out 19, 2013 23:30
- 5 Respostas
- 22187 Exibições
- Última mensagem por raimundoocjr

Qui Dez 26, 2013 17:13
Sites Recomendados / Outras Indicações
-
- Aulas de Cálculo 1 (Projeto Newton - UFPA)
por raimundoocjr » Sex Out 25, 2013 19:45
- 1 Respostas
- 19740 Exibições
- Última mensagem por raimundoocjr

Qui Dez 26, 2013 16:41
Sites Recomendados / Outras Indicações
-
- Binômio de Newton
por Giordane Junior » Sex Dez 03, 2010 00:46
- 0 Respostas
- 7898 Exibições
- Última mensagem por Giordane Junior

Sex Dez 03, 2010 00:46
Binômio de Newton
-
- (PUC-PR)BINOMIO DE NEWTON
por natanskt » Seg Dez 06, 2010 10:54
- 1 Respostas
- 7154 Exibições
- Última mensagem por Elcioschin

Seg Dez 06, 2010 11:54
Binômio de Newton
-
- Binômio de Newton
por natanskt » Seg Dez 06, 2010 12:07
- 1 Respostas
- 8547 Exibições
- Última mensagem por Elcioschin

Seg Dez 06, 2010 14:07
Binômio de Newton
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
zig - Sex Set 23, 2011 13:57
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
Vennom - Sex Set 23, 2011 21:41
zig escreveu:![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)
Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo:
Então pense o seguinte: a fração geratriz de 0,05 é

, ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja:
A raiz quadrada de vinte, você acha fácil, né?
Espero ter ajudado.
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
fraol - Dom Dez 11, 2011 20:23
Nós podemos simplificar, um pouco,

da seguinte forma:

.
É isso.
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
fraol - Dom Dez 11, 2011 20:24
Nós podemos simplificar, um pouco,

da seguinte forma:

.
É isso.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.