por Jhenrique » Qua Out 31, 2012 02:39
Caros, saudações!

com

é muito fácil de resolver, basta aplicar os conceitos do triângulo de pascal e adeus expoente!
Mas o que eu gostaria de saber é: (1) se é possível simplificar (simplificar no sentido de eliminar o expoente) uma equação cujo coeficiente não é dado, ou seja, ele é uma letra; e (2) é possível simplificar uma expressao do tipo

?
Mto obg!
"A solução errada para o problema certo é anos-luz melhor do que a solução certa para o problema errado." - Russell Ackoff
-
Jhenrique
- Colaborador Voluntário

-
- Mensagens: 180
- Registrado em: Dom Mai 15, 2011 22:37
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: Técnico em Mecânica
- Andamento: formado
por Russman » Qua Out 31, 2012 05:42
A expansão de

pelo Binômio de Newton vale para qualquer

racional.
"Ad astra per aspera."
-
Russman
- Colaborador Voluntário

-
- Mensagens: 1183
- Registrado em: Sex Abr 20, 2012 22:06
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Física
- Andamento: formado
por MarceloFantini » Qua Out 31, 2012 07:08
Segundo a Wikipedia Russman, é possível até para reais ou complexos. Sobre sua primeira pergunta, não entendi. Você quer algo como

e eliminar o expoente?
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por Jhenrique » Qua Out 31, 2012 18:04
A seguinte expressão

pode ser expressa como

(eu havia expressado esse desenvolvimento como "eliminando o expoente", me expressei mal).
A seguinte expressão

pode ser expressa como

.
Mas e quanto as expressões do tipo

,

, etc... existe alguma forma de desenvolvê-las?
E se eu quiser desenvolver, como fiz acima, a seguinte expressão

, a Wikipedia demonstra uma solução com o uso de somatório, entretanto, eu queria saber se existe alguma maneira mais prática, sem somatório.
"A solução errada para o problema certo é anos-luz melhor do que a solução certa para o problema errado." - Russell Ackoff
-
Jhenrique
- Colaborador Voluntário

-
- Mensagens: 180
- Registrado em: Dom Mai 15, 2011 22:37
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: Técnico em Mecânica
- Andamento: formado
por MarceloFantini » Qua Out 31, 2012 18:50
Jhenrique escreveu:A seguinte expressão

pode ser expressa como

(eu havia expressado esse desenvolvimento como "eliminando o expoente", me expressei mal).
A seguinte expressão

pode ser expressa como

.
Mas e quanto as expressões do tipo

,

, etc... existe alguma forma de desenvolvê-las?
E se eu quiser desenvolver, como fiz acima, a seguinte expressão

, a Wikipedia demonstra uma solução com o uso de somatório, entretanto, eu queria saber se existe alguma maneira mais prática, sem somatório.
Sua segunda expressão está errada, o correto é

. O somatório é apenas um artifício para escrever uma expressão de uma forma mais simples, compacta. Não a torna mais fácil ou difícil. Somatórios
são práticos.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por Jhenrique » Qua Out 31, 2012 18:51
Jhenrique escreveu:Mas e quanto as expressões do tipo

,

, etc... existe alguma forma de desenvolvê-las?
E se eu quiser desenvolver, como fiz acima, a seguinte expressão

, a Wikipedia demonstra uma solução com o uso de somatório, entretanto, eu queria saber se existe alguma maneira mais prática, sem somatório.
?
"A solução errada para o problema certo é anos-luz melhor do que a solução certa para o problema errado." - Russell Ackoff
-
Jhenrique
- Colaborador Voluntário

-
- Mensagens: 180
- Registrado em: Dom Mai 15, 2011 22:37
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: Técnico em Mecânica
- Andamento: formado
Voltar para Binômio de Newton
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- O coeficiente de x³...
por manuoliveira » Sáb Jun 05, 2010 13:29
- 2 Respostas
- 2525 Exibições
- Última mensagem por natanskt

Seg Dez 13, 2010 17:41
Binômio de Newton
-
- O coeficiente de x³...
por manuoliveira » Sáb Mai 28, 2011 17:22
- 2 Respostas
- 11014 Exibições
- Última mensagem por manuoliveira

Dom Mai 29, 2011 12:04
Binômio de Newton
-
- Coeficiente de correlação
por Wellington » Qua Mai 28, 2008 18:12
- 5 Respostas
- 5394 Exibições
- Última mensagem por Wellington

Qua Mai 28, 2008 21:03
Estatística
-
- coeficiente angular
por alexsandrob13 » Seg Mai 16, 2011 22:02
- 1 Respostas
- 1831 Exibições
- Última mensagem por Molina

Seg Mai 16, 2011 22:32
Geometria Analítica
-
- Coeficiente angular
por alexsandrob13 » Seg Mai 16, 2011 22:06
- 6 Respostas
- 4219 Exibições
- Última mensagem por alexsandrob13

Ter Mai 17, 2011 20:05
Geometria Analítica
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.