• Anúncio Global
    Respostas
    Exibições
    Última mensagem

(UCSAL-BA)num intendo essa questão

(UCSAL-BA)num intendo essa questão

Mensagempor natanskt » Sáb Dez 11, 2010 21:12

o termo independente de x no desenvolvimento de (\frac{3}{2}.x^2-\frac{1}{3x})^6
nem vou colocar alternativas,só que quero saber como começa,eu fiz varias dessas questões,só que não tinha o x^2 multiplicando,eu queria saber o que fazer com ele.
se eu multiplico por 3 ficaria 3x^2/2 isso procede? só quero intender o começo.valeu
natanskt
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 176
Registrado em: Qua Out 06, 2010 14:56
Formação Escolar: ENSINO MÉDIO
Área/Curso: nenhum
Andamento: cursando

Re: (UCSAL-BA)num intendo essa questão

Mensagempor DanielFerreira » Sáb Mar 03, 2012 23:11

natanskt escreveu:o termo independente de x no desenvolvimento de (\frac{3}{2}.x^2-\frac{1}{3x})^6
nem vou colocar alternativas,só que quero saber como começa,eu fiz varias dessas questões,só que não tinha o x^2 multiplicando,eu queria saber o que fazer com ele.
se eu multiplico por 3 ficaria 3x^2/2 isso procede? só quero intender o começo.valeu

\begin{pmatrix}
   6  \\ 
   0 
\end{pmatrix} . (\frac{3}{2}x^2)^6 . (\frac{1}{3x})^0 + \begin{pmatrix}
   6  \\ 
   1 
\end{pmatrix} . (\frac{3}{2}x^2)^5 . (\frac{1}{3x})^1 + ... + \begin{pmatrix}
   6  \\ 
   6 
\end{pmatrix} . (\frac{3}{2}x^2)^0 . (\frac{1}{3x})^6

Vc deverá encontrar os expoentes de x de modo que a soma resulte zero (nulo).

\begin{pmatrix}
   6  \\ 
   4 
\end{pmatrix} . (\frac{3}{2}x^2)^2 . (\frac{1}{3x})^4 =

\begin{pmatrix}
   6  \\ 
   4 
\end{pmatrix} = \frac{n!}{(n - p)!p!} = \frac{6.5.4!}{2! 4!} = \frac{6.5}{2.1} = 15

(\frac{3x^2}{2})^2 = \frac{9x^4}{4}

(\frac{1}{3x})^4 = \frac{1}{81x^4}


\begin{pmatrix}
   6  \\ 
   4 
\end{pmatrix} . (\frac{3}{2}x^2)^2 . (\frac{1}{3x})^4 = 15 . \frac{9x^4}{4} . \frac{1}{81x^4} =

\begin{pmatrix}
   6  \\ 
   4 
\end{pmatrix} . (\frac{3}{2}x^2)^2 . (\frac{1}{3x})^4 = 15 . \frac{1}{4} . \frac{1}{9} =

\begin{pmatrix}
   6  \\ 
   4 
\end{pmatrix} . (\frac{3}{2}x^2)^2 . (\frac{1}{3x})^4 = 5 . \frac{1}{4} . \frac{1}{2} =

\begin{pmatrix}
   6  \\ 
   4 
\end{pmatrix} . (\frac{3}{2}x^2)^2 . (\frac{1}{3x})^4 = \frac{5}{8}
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado


Voltar para Binômio de Newton

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: