por natanskt » Qui Dez 09, 2010 14:47
determine o termo independente de x no desenvolvimento de

tentei assim:
[Unparseable or potentially dangerous latex formula. Error 6 ]
-
natanskt
- Colaborador Voluntário

-
- Mensagens: 176
- Registrado em: Qua Out 06, 2010 14:56
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: nenhum
- Andamento: cursando
por Elcioschin » Sex Dez 10, 2010 21:30
Para (a + b)^n ----> Tp+1 = C(n, p)*(b^p)*a^(n - p)
Para a = x/3 , b = 3/x , n = 10:
Tp+1 = C(10, p)*[(3/x)^p]*(x/3)^(10-p)
Tp+1 = C(10, p)*(3^p/x^p)*[x^(10-p)/3^(10-p)]
Tp+1 = C(10, p)*[3^p/3(10-p)]*[(x^(10-p)/3^(10-p)]
Tp+1 = C(10, p)*[3^(2p-10)*[x^(10 - 2p)]
Para ser independente de x ----> 10 - 2p = 0 ----> p = 5 ---> 10 - 2p = 0 ----> x^0 = 1
T5+1 = C(10, 5)*[3^(2*5 - 10)]*1
T6 = C(10, 5)
T6 = 252
-
Elcioschin
- Colaborador Voluntário

-
- Mensagens: 624
- Registrado em: Sáb Ago 01, 2009 10:49
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia
- Andamento: formado
Voltar para Binômio de Newton
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- não consigo terminar esta questão.
por natanskt » Qui Dez 09, 2010 14:55
- 1 Respostas
- 1621 Exibições
- Última mensagem por alexandre32100

Qui Dez 09, 2010 16:09
Binômio de Newton
-
- Não consigo resolver esta questão.
por marianacarvalhops » Sex Mai 15, 2009 21:10
- 2 Respostas
- 2433 Exibições
- Última mensagem por admin

Sáb Mai 16, 2009 21:12
Trigonometria
-
- Não consigo resolver esta questão, por favor me ajudem!
por Derlan » Ter Jul 04, 2017 15:32
- 0 Respostas
- 1855 Exibições
- Última mensagem por Derlan

Ter Jul 04, 2017 15:32
Geometria Analítica
-
- Não consigo resolver esta inequação
por sindorf » Dom Set 06, 2009 20:42
- 1 Respostas
- 1469 Exibições
- Última mensagem por Marcampucio

Seg Set 07, 2009 00:04
Funções
-
- Não consigo resolver esta equação
por Ariel » Seg Nov 09, 2015 19:49
- 4 Respostas
- 2811 Exibições
- Última mensagem por eulercx

Ter Nov 10, 2015 10:52
Álgebra Elementar
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
(FGV) ... função novamente rs
Autor:
my2009 - Qua Dez 08, 2010 21:48
Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :
Assunto:
(FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25
Uma função de 1º grau é dada por

.
Temos que para

,

e para

,

.

Ache o valor de

e

, monte a função e substitua

por

.
Assunto:
(FGV) ... função novamente rs
Autor:
Pinho - Qui Dez 16, 2010 13:57
my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :
f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20
Assunto:
(FGV) ... função novamente rs
Autor:
dagoth - Sex Dez 17, 2010 11:55
isso ai foi uma questao da FGV?
haahua to precisando trocar de faculdade.
Assunto:
(FGV) ... função novamente rs
Autor:
Thiago 86 - Qua Mar 06, 2013 23:11
Saudações!
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b
Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.