• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Duvida Fatorial

Duvida Fatorial

Mensagempor natanskt » Qua Dez 01, 2010 13:37

calcule o valor de n nas sentenças
a-)5.(n-3)!+5.(n-1)!=30.(n-2)!

nessa questão eu achei como resposta 41/5,só que fala que é 7

b-)\frac{(n+3!)}{n+1)!}-\frac{(n+2)!}{n!}=20
achei como resposta n^3+6n^2+10n-24=0,porém o exercicio fala que é 8.
se eu estiver certo,por favor alguem pode acabar essa conta pq eu ainda não sei fazer quando tem n^3

agora esse pede para simpificar a expressão:
c-)\frac{(n+1)! + (n+2)!}{(n+3)!}
nessa a mesma coisa
cheguei a \frac{(n+2)!}{(n+3) . (n+2)}
o exercicio fala que é 1/n+2

desculpa galera se coloquei 3 questões é que são faceis demais,nem haveria necessidade de criar outro tópico com questões desse nivel.
eu que sou lerdo mesmo.
natanskt
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 176
Registrado em: Qua Out 06, 2010 14:56
Formação Escolar: ENSINO MÉDIO
Área/Curso: nenhum
Andamento: cursando

Re: Duvida Fatorial

Mensagempor alexandre32100 » Qua Dez 01, 2010 15:29

a.
Não sei se a resposta é 7, por que
5\cdot(7-3)!+5\cdot(7-1)!\not= 30\cdot(7-2)! (pode verificar!)

Também tentei algo do tipo
5\cdot(n-3)!+5\cdot(n-1)!=30\cdot(n-2)!
5\cdot(n-3)!+5\cdot(n-1)(n-2)(n-3)!=30\cdot(n-2)(n-3)! (pode dividir toda expressão por (n-3)!)
5+5\cdot(n-1)(n-2)=30\cdot(n-2) (aqui também dá pra simplificar tudo por 5)
1+(n-1)(n-2)=6(n-2)
E não cheguei a 7.

b.
\\\dfrac{(n+3)(n+2)\not{(n+1)!}}{\not{(n+1)!}}-\dfrac{(n+2)(n+1)\not{n!}}{\not{n!}}=20
(n+2)(n+3)-(n+2)(n+1)=20
Nessa, realmente, n=8.

c.
\dfrac{(n+1)! + (n+2)!}{(n+3)!}=\dfrac{(n+1)!+(n+2)(n+1)!}{(n+3)(n+2)(n+1)!}=\dfrac{1+n+2}{(n+3)(n+2)}=\dfrac{n+3}{(n+3)(n+2)}=\dfrac{1}{n+2}
alexandre32100
 


Voltar para Binômio de Newton

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}