por cafdesouza » Dom Dez 11, 2011 11:36
Olá a todos, estou com duas dúvidas sobre o desenvolvimento do MMQ.
Para ? (yk-(a0+a1*xk))², eu desenvolvi a conta para achar a formula de a0 e a1.
Apliquei as derivadas parciais em a0 e em a1 e cheguei a isso:
OBS: ?S/?a0, (a0,a1) e ?S/?a1, (a0,a1) são impostos o anulamento.
OBS2: k é índice do somatório, k=1 ate N (n°da amostra de dados bivariados)
?S/?a0 , (a0,a1) = N*a0+(?xk)a1=?yk
?S/?a1 , (a0,a1) = (?xk)a0+(?xk²)a1=?yk*xk
Temos o seguinte sistema:
N*a0+(?xk)a1 = ?yk
(?xk)a0+(?xk²)a1 = ?yk*xk
Não estou conseguindo resolver o sistema :(
Como eu devo prosseguir? A resolução do meu professor ainda mostra que ele montou a matriz hessiana para achar as formulas de a0 e a1, fui tentar montar a matriz e também não consegui prosseguir...
A outra dúvida também é análoga, só que eu desenvolvi o MMQ para um polinômio de grau 2.
Repetindo o mesmo processo cheguei ao seguinte sistema:
N*a0+(?xk)a1+(?xk²)a2 = ?yk
(?xk)a0+(?xk²)a1+(?xk³)a2 = ?yk*xk
(?xk²)a0+(?xk³)a1+(?xk?)a2 = ?yk*xk²
Novamente, não consegui resolver o sistema...
Agradeço desde já e desculpe o incomodo.
OBS3: Peço desculpas também se eu infringi alguma regra de postagem e pela elaboração do enunciado caso o mesmo não seja claro, é que eu fiz meio que na pressa a formulação da dúvida rs.
Abraço.
-
cafdesouza
- Novo Usuário

-
- Mensagens: 1
- Registrado em: Dom Dez 11, 2011 11:00
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: Analise e Desenvolvimento de Sistemas
- Andamento: cursando
Voltar para Estatística
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Problema de mínimos quadrados
por brunozi » Ter Set 29, 2009 10:54
- 0 Respostas
- 1654 Exibições
- Última mensagem por brunozi

Ter Set 29, 2009 10:54
Estatística
-
- Mínimos quadrados e Projeção Ortogonal
por Jhonata » Sex Jul 19, 2013 19:44
- 7 Respostas
- 4959 Exibições
- Última mensagem por Jhonata

Dom Jul 21, 2013 10:49
Álgebra Linear
-
- Minimos Quadrados e Curva S , descobrir coef a e b
por Joao Petrocelle » Qui Jan 17, 2013 10:00
- 0 Respostas
- 1016 Exibições
- Última mensagem por Joao Petrocelle

Qui Jan 17, 2013 10:00
Funções
-
- [LIMITE] DÚVIDA - soma de quadrados
por beel » Dom Set 18, 2011 17:40
- 3 Respostas
- 1728 Exibições
- Última mensagem por beel

Dom Out 16, 2011 17:07
Cálculo: Limites, Derivadas e Integrais
-
- [duvida] metodo de laguerre
por ftdk » Dom Set 23, 2012 10:17
- 4 Respostas
- 3376 Exibições
- Última mensagem por ftdk

Dom Set 23, 2012 18:24
Polinômios
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.