• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Distribuição de Frequencias

Distribuição de Frequencias

Mensagempor Walquiria » Sáb Nov 05, 2011 22:40

Não Consigo resolver??????
Em uma comunidade de 30 mariposas, a quantidade de ovos postos formou a seguinte distribuição:
OVOs 10 -15 -16- 17 -19 -22 - 25
Nº de Mariposas 2 1 4 3 8 10 2

Calcule:
a) A Quantidade média dos ovos
b) A quantidade mediana dos ovos
c) A amplitude total
Walquiria
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 31
Registrado em: Dom Abr 03, 2011 11:54
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Andamento: formado

Re: Distribuição de Frequencias

Mensagempor Neperiano » Sáb Nov 05, 2011 23:03

Ola

Monte uma tabela de frequencias

Ovos Numero de mariposas
10 2
15 1
16 4
17 3
19 8
22 10
25 2

Agora é só calcular a média, multiplique o da esquerda pelo da direita em todos e some, depois divida pelo numero de mariposas

Mediana o valor do meio

E amplitude, o maior menos o menor

Atenciosamente
Sómente os mortos conhecem o fim da guerra
"Platão"
Avatar do usuário
Neperiano
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 960
Registrado em: Seg Jun 16, 2008 17:09
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de Produção
Andamento: cursando

Re: Distribuição de Frequencias

Mensagempor Walquiria » Dom Nov 06, 2011 10:09

Poderia Conferir a resposta Por Favor
A média é 81,71
A mediana é 17
AT= 15
Walquiria
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 31
Registrado em: Dom Abr 03, 2011 11:54
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Andamento: formado

Re: Distribuição de Frequencias

Mensagempor Neperiano » Dom Nov 06, 2011 11:36

Ola

Sua média e sua mediana estão erradas, se preferir rescreva a tabela em linha

10 10 15 16 16 16 16 17 17 17 19 19 19 19 19 19 19 19 22 22 22 22 22 22 22 22 22 22 25 25

Tente agora

Atenciosamente
Sómente os mortos conhecem o fim da guerra
"Platão"
Avatar do usuário
Neperiano
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 960
Registrado em: Seg Jun 16, 2008 17:09
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de Produção
Andamento: cursando

Re: Distribuição de Frequencias

Mensagempor Walquiria » Dom Nov 06, 2011 13:24

Média=
572/30= 19,06
Mediana= 19
Agora está correto????? Por Favor diga que sim rs...... Nossa estou gastando todos os meus neurônios.
Walquiria
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 31
Registrado em: Dom Abr 03, 2011 11:54
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Andamento: formado

Re: Distribuição de Frequencias

Mensagempor Walquiria » Dom Nov 06, 2011 13:33

CORREÇÃO:
Mediana seria 15,5 ok??????
Walquiria
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 31
Registrado em: Dom Abr 03, 2011 11:54
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Andamento: formado

Re: Distribuição de Frequencias

Mensagempor Neperiano » Dom Nov 06, 2011 16:10

Ola

A média é 19,06 e a mediana 19 (valor do meio)

Atenciosamente
Sómente os mortos conhecem o fim da guerra
"Platão"
Avatar do usuário
Neperiano
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 960
Registrado em: Seg Jun 16, 2008 17:09
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de Produção
Andamento: cursando


Voltar para Estatística

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?