• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Espero que me ajudem

Espero que me ajudem

Mensagempor nayane » Seg Out 31, 2011 15:15

Olá espero que possam me ajudar nessa questão, não sei como explicar o que ele pedi.

1) A probabilidade de sair "cara' em um lançamento de uma é de 0,5. Um jogador ao lançar 100 vezes uma moeda não viciada, verificou a ocorrência de uma frequência relativa igual a 65% para "cara". Explique porque não ocorreu uma frequência de 50%.
Obrigada :)
Nayane
Avatar do usuário
nayane
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 31
Registrado em: Sex Set 10, 2010 10:42
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em ciências biológicas
Andamento: cursando

Re: Espero que me ajudem

Mensagempor Neperiano » Sex Nov 04, 2011 14:14

Ola

Por isso que é probabilidade, o fluminense num campeonato de futebol tinha chance de cair para a segunda fivisão de 99%, ele caiu? Não, porque começou a ganhar todas as partidas, contrariou a probailidade.

Neste caso aconteceu isso porque saiu mais vezes cara do que a probabildade projetou, não sei se há uma explicação obvia para isso.

Atenciosamente
Sómente os mortos conhecem o fim da guerra
"Platão"
Avatar do usuário
Neperiano
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 960
Registrado em: Seg Jun 16, 2008 17:09
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de Produção
Andamento: cursando


Voltar para Estatística

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.