por robertsilvaa » Dom Mai 22, 2011 13:27
bom dia não sei como iniciar o exercício abaixo por isso não postei nenhuma tentativa. Estou desesperado, pois tenho que finalizar este mesmo até amanhã (23/05/2011)e não sei nem como iniciar o mesmo se puderem me deem dicas de como poder iniciar o mesmo. desde já agradeço. Obrigado...
Estatítica : A) Uma distribuição de frequência possui as seguintes medidas:
Distribuições A,B e C
Média 52,45 e 48
Moda 52, 50 e 46
Diante da tabela acima, considere os valores relativos a 3 (três) distribuições de frequência, então determine o tipo de assimetria de cada uma delas.
B) Em determinada distribuição de frequência, é apresentada as seguintes medidas: Média = 48,1, Mediana = 47,9 e Variância = 2,12. Calcule o Coeficiente (Índice) de Pearson.
Faça uma pesquisa sobre Medidas de Dispersão, e comente com suas palavras o que você entendeu.
Matemática aplicada a Adm.
1) Determine os pontos de máximo ou mínimo de: f’(x) = 2x3 – 24 x + 12
2) Determine os valores de x para os quais a primeira derivada se anula para a seguinte função: f(x) = 3x3 + 2x2 – 9.
3) Considere que a função Custo Marginal de uma indústria de brinquedos seja dada pela função Cmg(x) = 3x2 – 4x + 12. Suponha que o custo fixo desta indústria seja de 20 unidades. Determine a função Custo Total dessa indústria.
4) Considere as funções demanda qd(x)= 60 – 4x e oferta q0(x) = 5x + 10
Determine o excedente do Consumidor.
-
robertsilvaa
- Novo Usuário

-
- Mensagens: 1
- Registrado em: Seg Mai 16, 2011 12:00
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Administração
- Andamento: cursando
Voltar para Estatística
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Estatística Aplicada
por Ursa CTA » Sex Set 12, 2008 20:42
- 1 Respostas
- 6679 Exibições
- Última mensagem por Ursa CTA

Sex Set 12, 2008 20:43
Dúvidas Pendentes (aguardando novos colaboradores)
-
- Estátistica aplicada - Cont 5 Exer. 1
por Rene » Qui Mar 14, 2013 17:01
- 0 Respostas
- 2382 Exibições
- Última mensagem por Rene

Qui Mar 14, 2013 17:01
Estatística
-
- Estátistica aplicada - Cont 5 Exer. 2
por Rene » Qui Mar 14, 2013 17:13
- 0 Respostas
- 2279 Exibições
- Última mensagem por Rene

Qui Mar 14, 2013 17:13
Estatística
-
- Estátistica aplicada - Cont 5 Exer. 3
por Rene » Qui Mar 14, 2013 17:35
- 0 Respostas
- 3489 Exibições
- Última mensagem por Rene

Qui Mar 14, 2013 17:35
Estatística
-
- Probabilidade Estatística Aplicada - Necessito de ajuda!
por MARCION9 » Ter Mai 12, 2015 19:45
- 1 Respostas
- 7681 Exibições
- Última mensagem por MARCION9

Dom Mai 17, 2015 18:57
Estatística
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.