• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Calcular a quantidade de prêmios da mega sena

Calcular a quantidade de prêmios da mega sena

Mensagempor julinternauta » Ter Mai 17, 2011 13:58

Tenho um exercício da faculdade que pede para descrever matematicamente como se calcula os valores encontrados para os prêmios da mega sena, sena,quina e quadra respectivamente, para um um bilhete de 15 números jogados que contém as 6
dezenas sorteadas também acerta 54 quinas e 540 quadras.Conforme a planilha em anexo.

Ou seja estou tentando achar como foi feito o calculo para identificar que para 15 números jogados acerto 1 sena,54 quinas e 540 quadras.

Descobri através da formula de combinação que se jogo 15 números tenho 5005 apostas: C15,5 = 15!/5!10! = 5005
Pela planilha em anexo percebi que para cada quantidade de dezenas jogadas é divido a quantidade de apostas por sena,quina e quadra, sendo sempre uma sena. Por exemplo para 8 números jogados tenho 28 apostas, sendo 1 sena, 12 quinas e 15 quadras, 1 + 12+15 = 28, para 7 números 1(sena) + 6(quadras) = 7 apostas.

Só que para 15 números a soma não dá 5005 apostas, veja 1+54+540 = 595 ?

Tentei usar combinação para fazer o cálculo, tipo para quina 15 -1(sena) = 14 , C14,5 = 14!/5!9! = 2002

Sei que são 54 combinações de 5 e 540 combinações de 4 números.Mas não sei como como achar esta resposta.

Poderiam pelo menos me dar algumas dicas?

Att ,Juliana Luiz.
julinternauta
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Seg Mai 16, 2011 18:35
Formação Escolar: GRADUAÇÃO
Área/Curso: Sistemas de Informação
Andamento: cursando

Re: Calcular a quantidade de prêmios da mega sena

Mensagempor julinternauta » Qui Mai 26, 2011 13:57

Meus colegas da faculdade me ajudaram na resolução desta questão.Segue abaixo o raciocínio lógico.

Para as quinas
Para se fazer quina haverá 1 dezena errada. Como qualquer uma das 6 dezenas pode ser a errada, temos então 6 alternativas de erro.
A dezena errada precisa ser substituida por uma outra entre as 9 não existentes no jogo, ou seja 15 - 6 = 9
Substituindo cada uma das 6 dezenas por cada uma das 9 possibilidades se tem : 6 x 9 = 54 quinas.

Para as quadras
Para se fazer quadra haverá 2 dezenas erradas. Sendo 6 dezenas, temos então que calculara quantos pares existem em 6 dezenas.
Isto é feito pela fórmula de combinação de 6 tomados 2 a 2. A notação disso é C6,2 e o resultado é 15.
Esses 15 pares errados podem ser substituidos por C9,2 = 36 pares (as 9 dezenas ausentes do jogo combinadas 2 a 2).
Então cada um dos 15 pares de erro pode ser substituido por 36 pares ausentes, o que resulta em 15 x 36 = 540.

ou então,

C6,5 = C6!/1!5! = 6
C9,1 = 9!/1!8! = 9
6*9 = 54 quinas

C6,4 = 15
C9,2 = 36
15*36 = 540 quadras

ou ainda

Suponha que destas 15 dezenas eu tive a SORTE de escolher as 6 dezenas que foram sorteadas.
- Portanto, restaram 15-6= 9 dezenas que não premiaram nada.

Premiação:
(escolha entre as sorteadas premiadas) * (escolha entre as não sorteadas)

(6 escolhe 6) * (9 escolhe 0) = 1 bilhete de 6 acertos
(6 escolhe 5) * (9 escolhe 1) = 54 bilhetes de 5 acertos
(6 escolhe 4) * (9 escolhe 2) = 540 bilhetes de 4 acertos
(6 escolhe 3) * (9 escolhe 3) = 1680 bilhetes de 3 acertos
(6 escolhe 2) * (9 escolhe 4) = 1890 bilhetes de 2 acertos
(6 escolhe 1) * (9 escolhe 5) = 756 bilhetes de 1 acerto
(6 escolhe 0) * (9 escolhe 6) = 84 bilhetes de Zero acerto

1 + 54 + 540 + 1 680 + 1 890 + 756 + 84 = 5005 Bilhetes

Espero que ajude alguém futuramente.
julinternauta
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Seg Mai 16, 2011 18:35
Formação Escolar: GRADUAÇÃO
Área/Curso: Sistemas de Informação
Andamento: cursando


Voltar para Estatística

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Proporcionalidade
Autor: silvia fillet - Qui Out 13, 2011 22:46

Divida o numero 35 em partes diretamente proporcionais a 4, 10 e 14. Em seguida divida o mesmo numero em partes proporcionais a 6, 15 e 21. explique por que os resultados sao iguais.


Assunto: Proporcionalidade
Autor: silvia fillet - Sáb Out 15, 2011 10:25

POR GENTILEZA PODEM VERIFICAR SE O MEU RACIOCINIO ESTÁ CERTO?

P1 = K.4 SUBSTITUINDO K POR 1,25 P1= 5
P2 = K.10 SUBSTITUINDO K POR 1,25 P2= 12,50
P3 = K.13 SUBSTITUINDO K POR 1,25 P3= 17,50

P1+P2+P3 = 35
K.4+K.10+K.13 = 35
28 K = 35
K= 1,25


P1 = K.6 SUBSTITUINDO K POR 0,835 P1= 5
P2 = K.15 SUBSTITUINDO K POR 0,835 P2 = 12,50
P3 = K.21 SUBSTITUINDO K POR 0,835 P3 = 17,50
K.6+K.15+K.21 = 35
42K = 35
K= 0,833


4/6 =10/15 =14/21 RAZÃO = 2/3

SERÁ QUE ESTÁ CERTO?
ALGUEM PODE ME AJUDAR A EXPLICAR MELHOR?
OBRIGADA
SILVIA


Assunto: Proporcionalidade
Autor: ivanfx - Dom Out 16, 2011 00:37

utilize a definição e não se baseie no exercícios resolvidos da redefor, assim você terá mais clareza, mas acredito que sua conclusão esteja correto, pois o motivo de darem o mesmo resultado é pq a razão é a mesma.


Assunto: Proporcionalidade
Autor: Marcos Roberto - Dom Out 16, 2011 18:24

Silvia:
Acho que o resultado é o mesmo pq as razões dos coeficientes e as razões entre os números são inversamente proporcionais.

Você conseguiu achar o dia em que caiu 15 de novembro de 1889?


Assunto: Proporcionalidade
Autor: deiasp - Dom Out 16, 2011 23:45

Ola pessoal
Tb. estou no redefor
O dia da semana em 15 de novembro de 1889, acredito que foi em uma sexta feira


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 06:23

Bom dia,
Realmente foi uma sexta feira, como fazer os calculos para chegar ?


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 07:18

Para encontrar o dia que caiu 15 de novembro de 1889 você deve em primeiro lugar encontrar a quantidade de anos bissextos que houve entre 1889 à 2011, após isso dá uma verificada no ano 1900, ele não é bissexto, pois a regra diz que ano que é múltiplo de 100 e não é múltiplo de 400 não é bissexto.
Depois calcule quantos dias dão de 1889 até 2011, basta pegar a quantidade de anos e multiplicar por 365 + 1 dia a cada ano bissexto (esse resultado você calculou quando encontrou a quantidade de anos bissextos)
Pegue o resultado e divida por 7 e vai obter o resto.
obtendo o resto e partindo da data que pegou como referência conte a quantidade do resto para trás da semana.


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 07:40

Bom dia,
Será que é assim:
2011 a 1889 são 121 anos sendo , 30 anos bissextos e 91 anos normais então temos:
30x366 = 10.980 dias
91x365 = 33.215 dias
incluindo 15/11/1889 - 31/12/1889 47 dias
33215+10980+47 = 44242 dias

44242:7 = 6320 + resto 2

è assim, nâo sei mais sair disso.


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 10:24

que tal descontar 1 dia do seu resultado, pois 1900 não é bissexto, ai seria 44241 e quando fizer a divisão o resto será 1
como etá pegando base 1/01/2011, se reparar bem 01/01/2011 sempre cai no mesmo dia que 15/01/2011, sendo assim se 01/01/2011 caiu em um sábado volte 1 dia para trás, ou seja, você está no sábado e voltando 1 dia voltará para sexta.então 15/11/1889 cairá em uma sexta


Assunto: Proporcionalidade
Autor: Kiwamen2903 - Seg Out 17, 2011 19:43

Boa noite, sou novo por aqui, espero poder aprender e ajudar quando possível! A minha resposta ficou assim:


De 1889 até 2001 temos 29 anos bissextos a começar por 1892 (primeiro múltiplo de 4 após 1889) e terminar por 2008 (último múltiplo de 4 antes de 2011). Vale lembrar que o ano 1900 não é bissexto, uma vez que é múltiplo de 100 mas não é múltiplo de 400.

De um ano normal para outro, se considerarmos a mesma data, eles caem em dias consecutivos da semana. Por exemplo 01/01/2011 – sábado, e 01/01/2010 – sexta.

De um ano bissexto para outro, se considerarmos a mesma data, um cai dois dias da semana depois do outro. Por exemplo 01/01/2008 (ano bissexto) – Terça – feira, e 01/01/09 – Quinta-feira.

Sendo assim, se contarmos um dia da semana de diferença para cada um dos 01/01 dos 122 anos que separam 1889 e 2011 mais os 29 dias a mais referentes aos anos bissextos entre 1889 e 2011, concluímos que são 151 dias da semana de diferença, o que na realidade nos trás: 151:7= 21x7+4, isto é, são 4 dias da semana de diferença. Logo, como 15/11/2011 cairá em uma terça-feira, 15/11/1889 caiu em uma sexta-feira.