• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Probabilidade - Confirmar resultados Urgentee

Probabilidade - Confirmar resultados Urgentee

Mensagempor Suy Becker » Qua Mai 11, 2011 15:04

Por favor, terminei outra lista de exercicio, mas num sei se os fiz ta certo, se num tiver, me ajudem??

1) Num certo colégio, 4% dos homens e 1% das mulheres têm mais de 1,75m de altura. 60% dos estudantes são mulheres, Um estudante escolhido ao acaso e tem mais de 1,75m de altura. Qual a probabilidade de que seja homem?

fiz assim:

P(h/+1,75) = \frac{P(+1,75/h).P(h)}{P(+1,75/h).P(h)+P(+1,75/m).P(m)}
P(h/+1,75) = [Unparseable or potentially dangerous latex formula. Error 6 ]
p(h/+1,75) = 72,73%

2) A probabilidade de que um indivíduo da classe A comprar um carro é de \frac{3}{4}, da B é de \frac{1}{5} e da C é de \frac{1}{20}. As probabilidades de os indivíduos comprarem um carro da marca {x} sao \frac{1}{10}, \frac{3}{5} e [Unparseable or potentially dangerous latex formula. Error 6 ], dado que sejam de A, B e C, respectivamente. Certa loja vendeu um carro da marca {x}. Qual a probabilidade de que o indivíduo que o comprou seja da classe B?

fiz assim:


P(B/X) = \frac{P(X/B).P(B)}{P(X/B).P(B)+P(X/A).P(A)+P(X/C).P(C)}
P(B/X) = \frac{\frac{3}{5}.\frac{1}{5}}{\frac{3}{5}.\frac{1}{5}+\frac{1}{10}.\frac{3}{4}+\frac{3}{10}.\frac{1}{20}}
P(B/X) = \frac{4}{7}

3) hÁ 60 candidatos a um emprego. alguns têm curso superior(S), outros não; alguns tem no minimo tres anos de experiencia (T), outros não. A distribuição é:

S S' total
T 12 6 18
T' 24 18 42
total 36 24 60

Se a ordem de entrevista é aleatória, S é o evento: o primeiro a se entrevistado tem curso superior e T é o evento: o primeiro tem experiencia minima de tres anos. Calcular as seguintes probabilidades:

a) P(T/S)
P(T/S) = \frac{P(S/T).P(T)}{P(S/T).P(T)+P(S/T').P(T')}
P(T/S) = \frac{12.18}{12.18+24.18}
P(T/S) = \frac{1}{3}

b) P(S\capT)
P(S\capT) = P(S).P(T)
P(S\capT) = 36.18
P(S\capT) = 648

c) P(S'P(S\capT)
P(S'P(S\capT) = P(S').P(T)
P(S'P(S\capT) = 24.18
P(S'P(S\capT) = 432

d) P(S)
P(S) = \frac{N(S)}{N(E)}
P(S) = \frac{36}{60}
P(S) = \frac{3}{5}

4) Em uma industria de enlatados, as linhas de produção, I, II e III respondem por 50%, 30% e 20% da produção respectivamente. As proporções de latas com defeito de produção nas linhas I, II e III são 0,4%, 0,6% e 1,2%. Qual a probabilidade de uma lata defeituosa (descoberta no final da inspeção do produto acabado) provir da linha I?

P(I/D) = \frac{P(D/I).P(I)}{P(D/I).P(I)+P(D/II).P(II)+P(D/III).P(III)}
P(I/D) = \frac{0,4.50}{0,4.50+0,6.30+1,2.20}
P(I/D) = 32,26%


BOM, TUDO ISSO, AHSUHUSA...
BJOS
E AGRADEÇO DESDE JA
Suy Becker
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Sex Fev 25, 2011 14:44
Formação Escolar: GRADUAÇÃO
Área/Curso: Publicidade e Propaganda
Andamento: cursando

Voltar para Estatística

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 6 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}


cron