• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Probabilidade - Urgentee...

Probabilidade - Urgentee...

Mensagempor Suy Becker » Qua Mai 11, 2011 10:29

Por favor, alguém poderia me ajudar??
não to conseguindo fazer de jeito nenhum esses 2 exercicios da minha lista. 1º Não entendi nada do enunciado e 2º Não consegui saber que fórmula usar.

1. Qual o número de jogadas de uma moeda necessário para assegurar uma probabilidade superior a 0,75 de se obter ao menos uma cara (K)?

2. Uma tábua de mortalidade acusa as seguintes taxas de mortalidade {q}_{x} (isto é, probabilidade de um indivíduo de idade {x} morrer antes de atingir a idade {x} + 1):

(tabela a seguir)
x 30 31 32 33 34 35
q 0,00213 0,00219 0,00225 0,00232 0,0024 0,00251

a) Dado um indivíduo de 30 anos, qual a probabilidade dele atingir a idade de 31 anos?

b) Para o mesmo indivíduo, qual a probabilidade de morrer antes de completar 35 anos?




POR FAVOR ME AJUDEMMM...\
Obrigadaa
Suy Becker
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Sex Fev 25, 2011 14:44
Formação Escolar: GRADUAÇÃO
Área/Curso: Publicidade e Propaganda
Andamento: cursando

Re: Probabilidade - Urgentee...

Mensagempor carlosalesouza » Qua Mai 11, 2011 12:55

Olá...

O 1º é muito simples...

Sabemos que a probabilidade de NÃO ocorrer cara, é \left(\frac{1}{2}\right)^n, onde n é o número de vezes que vc lançar a moeda... assim, a probabilidade de ocorrer cara(k) é 1 - \frac{1}{2^n}

Aqui, sabemos que p(k) = 0,75 = 3/4

Então:
\\
\frac{3}{4} = 1 - \frac{1}{2^n}\\
\frac{1}{2^n} = 1-\frac{3}{4}\\
\frac{1}{2^n}=\frac{1}{4}\ (Multiplicando\ cruzado)\\
2^n = 4\\
2^n = 2^2\\
n=2

Quanto ao outro... a probabilidade de atingir uma tal idade é a probabilidade de não morrer... ou seja... 1-q_x

De 30 pra 31 não dá nem graça... rs é 1 - 0,00213...

Até 35 é a mesma coisa: 1 - 0,00213 - 0,00219 - 0,00225 - 0,00232 ..........
Ok?

Um abraço
Carlos Alexandre
Ciências Contábeis - FECEA/PR
Matemática - UEPG/PR
carlosalesouza
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 103
Registrado em: Sex Abr 29, 2011 17:28
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática -LIC
Andamento: cursando

Re: Probabilidade - Urgentee...

Mensagempor Suy Becker » Qua Mai 11, 2011 15:11

MUITO OBRIGADA

XD
Suy Becker
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Sex Fev 25, 2011 14:44
Formação Escolar: GRADUAÇÃO
Área/Curso: Publicidade e Propaganda
Andamento: cursando


Voltar para Estatística

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59