por trenanc » Qui Fev 17, 2011 13:34
Boa tarde amigos.
Sou Thiago e me deparei com uma dúvida. Não consigo resolver uma equação.
A equação a qual me refiro é a da abordagem Top-Down do mercado doméstico que esta no link a seguir:
http://www.bndes.gov.br/SiteBNDES/expor ... emanda.pdf"Favor considerar valores fictícios para as variáveis."
Se alguem puder me ajudar. Quero aplicar ela no mesmo contexto só que para aviação regional.
Atenciosamente, Thiago Renan da Costa.
MSN/e-mail:
trenanc@ibest.com.br
-
trenanc
- Novo Usuário

-
- Mensagens: 2
- Registrado em: Qui Fev 17, 2011 11:38
- Formação Escolar: EJA
- Área/Curso: Economia
- Andamento: cursando
Voltar para Estatística
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Previsão de Demanda (AJUDA POR FAVOR)
por trenanc » Qui Fev 17, 2011 20:49
- 0 Respostas
- 1204 Exibições
- Última mensagem por trenanc

Qui Fev 17, 2011 20:49
Logaritmos
-
- Previsão do fim do mundo
por DanielFerreira » Sáb Set 08, 2012 21:45
- 3 Respostas
- 4976 Exibições
- Última mensagem por Munpenrai

Qua Dez 14, 2016 10:49
Desafios Fáceis
-
- [Estatística] - Calculo de prospecção ou previsão (estimaiva
por kaian » Sáb Jan 21, 2012 21:48
- 4 Respostas
- 5105 Exibições
- Última mensagem por Neperiano

Seg Jan 23, 2012 21:22
Matemática Financeira
-
- Demanda
por joaolage » Seg Mar 10, 2008 21:27
- 1 Respostas
- 5512 Exibições
- Última mensagem por admin

Seg Mar 10, 2008 21:43
Funções
-
- Oferta e Demanda
por DaniAs » Qua Set 15, 2010 10:35
- 0 Respostas
- 6600 Exibições
- Última mensagem por DaniAs

Qua Set 15, 2010 10:35
Funções
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.