• Anúncio Global
    Respostas
    Exibições
    Última mensagem

permutação"!

permutação"!

Mensagempor Anderson POntes » Qua Jul 14, 2010 18:42

Permutam-se de todos os modos possíveis ao algarismos 1, 2, 4, 6, 7 e escrevem-se os números assim formados em ordem crescente.
a) que lugar ocupa o número 62417?
b) qual o número que ocupa o 66º lugar?
c) qual o 200º algarismo escrito?
d) qual a soma dos números assim formados?


alguem pode me ajudar? faz tempo q nao faço isso , agaradeço desde já!!
Anderson POntes
Usuário Ativo
Usuário Ativo
 
Mensagens: 24
Registrado em: Qui Jul 08, 2010 17:53
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: tecnico eletrotécnica
Andamento: formado

Re: permutação"!

Mensagempor Elcioschin » Qui Jul 15, 2010 14:42

a) Posição de 62417:

Começando por 1, 2 e 4 ----> 3*4! = 72 -----> 12467 até 47621

Começando por 61 ----> 3! = 6 ----> 61247, 61274, 61427, 61472, 61724, 61742

Começando por 621 ----> 2! = 2 ----> 62147, 621472

Começando por 6241 ----> 1! = 1

72 + 6 + 2 + 1 = 81 ----> O número 62417 ocupa a 81ª posição

b) 66º número:

Começando por 1, 2 ----> 2*4! = 48 -----> 12467 até 27642

Começando por 41 42 e 43 ----> 3*3! = 18 ----> De 41762 atá 43761

48 + 18 = 66 -----> O 66º número é 43761

c) Qual o 200º algarismo escrito

Cada número tem 5 algarismos. O 200º algarismo é o último algarismo do 40º número (200/5)

Começando por 1 ----> 4! = 24
Começando por 21, 24 ----> 2*3! = 12
Começando por 261 e 264 ----> 2*2! = 4 ----> 24 + 12 + 4 = 40

40º número = 26471 ----> 200º algarismo = 1



49º ----> 41267
50º ----> 41627 ----> Último algarismo = 1
Elcioschin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 624
Registrado em: Sáb Ago 01, 2009 10:49
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: formado


Voltar para Estatística

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59