• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Distribuição Acumulada de probabilidade

Distribuição Acumulada de probabilidade

Mensagempor LeoLemos123 » Qui Mai 11, 2017 20:50

Uma distribuição de probabilidade é dada da seguinte maneira
f(x)={0, para x < 0;
x + 1, 0 =< x < 1/2;
1,5, para 1/2 =< x < 3/4;
0, para x > 3/4


a) Calcule o valor médio da distribuição;
b) Calcule a variância da distribuição;
c) Calcule a moda desta distribuição.

agradeço desde ja a ajuda...to com bastante dificldade
LeoLemos123
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Dom Ago 02, 2015 20:18
Formação Escolar: GRADUAÇÃO
Área/Curso: Computação
Andamento: cursando

Voltar para Estatística

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.