por RJ1572 » Qui Mar 04, 2010 11:01
Em uma caixa. Há 49 bolinhas de gude brancas e 49 azuis. Ludovico tirou duas bolinhas da caixa
sem olhar. Se p é a probabilidade de as duas bolinhas serem de cores diferentes, e q, a
probabilidade de serem da mesma cor, a diferença entre p e q é?,
a) 1/49
b) 1/97
c) 1/98
d) 1/194
e) 1/196
A resposta correta é a letra B.
Mas não estou conseguindo chegar ao resultado...não saio de 1/194
Alguém pode me ajudar no desenvolvimento?
Obrigado.
-
RJ1572
- Usuário Dedicado

-
- Mensagens: 36
- Registrado em: Sex Fev 26, 2010 13:00
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por Douglasm » Qui Mar 04, 2010 11:54
Bom dia RJ1572. Primeiramente vamos calcular as probabilidades
p e
q:
Na situação em que as bolinhas são diferentes, temos 98 possíveis extrações na primeira bola e 49 possibilidades na segunda. (Na primeira pode ser qualquer bola e na segunda pode ser qualquer uma das que tem cor diferente). O número de casos favoráveis é, portanto,
98 x 49. O número de extrações totais possíveis é igual a
98 x 97 (tira-se uma bola qualquer e depois uma das 97 que sobraram). Deste modo a probabilidade
p é igual a:
[Unparseable or potentially dangerous latex formula. Error 6 ]
Agora vejamos a situação em que as bolinhas são iguais. Tiramos uma das 98 bolinhas e depois 48 das bolinhas de mesma cor remanescentes. Assim temos que a probabilidade
q é igual a:

Fazendo
p-q, temos:

E está ai a resposta! Até a próxima.
-

Douglasm
- Colaborador Voluntário

-
- Mensagens: 270
- Registrado em: Seg Fev 15, 2010 10:02
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
Voltar para Estatística
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Questão de probablilidade de velocidade de tranferencia
por JohnNeyBurjack » Ter Mai 02, 2017 12:43
- 0 Respostas
- 2587 Exibições
- Última mensagem por JohnNeyBurjack

Ter Mai 02, 2017 12:43
Probabilidade
-
- [Questão POSCOMP 2011] Ajuda para interpretar questão
por hlustosa » Dom Jul 29, 2012 14:54
- 3 Respostas
- 12640 Exibições
- Última mensagem por hlustosa

Seg Jul 30, 2012 01:13
Funções
-
- Questão de P.A.
por mushthielv » Seg Ago 17, 2009 12:21
- 2 Respostas
- 10677 Exibições
- Última mensagem por Elcioschin

Ter Ago 18, 2009 08:54
Progressões
-
- QUESTÃO
por GABRIELA » Ter Set 08, 2009 16:32
- 2 Respostas
- 13898 Exibições
- Última mensagem por GABRIELA

Ter Set 08, 2009 21:21
Matrizes e Determinantes
-
- Questão da FCC
por wanderlymarques » Qua Nov 18, 2009 12:44
- 2 Respostas
- 4734 Exibições
- Última mensagem por wanderlymarques

Qui Nov 19, 2009 12:58
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.