• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Combinação com diagonais de um polígono

Combinação com diagonais de um polígono

Mensagempor Douglasm » Seg Fev 15, 2010 10:38

Bom dia a todos do fórum! Gostaria de saber se alguém pode me ajudar com essa questão:

Considere um polígono convexo com n lados e suponha que não há duas de suas diagonais paralelas, nem três que concorram num mesmo ponto que não seja vértice.

- Quantos são os pontos de intersecção interiores ao polígono?

- Quantos são os pontos de intersecção exteriores ao polígono?

Principalmente na parte em que se pede os pontos exteriores, eu tenho dificuldades em estipular como funcionaria isso. Imagino que quando falamos dos pontos interiores, estamos apenas nos referindo a uma combinação de n, quatro a quatro (quatro pontos = duas diagonais = um ponto de intersecção). A resposta dessa até confere com o gabarito, mas gostaria que alguém me explicasse com mais clareza! =)

As respostas:

\frac{n(n-1)(n-2)(n-3)}{24} e \frac{n(n-3)(n-4)(n-5)}{12}, respectivamente.

Desde já agradeço.
Avatar do usuário
Douglasm
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 270
Registrado em: Seg Fev 15, 2010 10:02
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Voltar para Estatística

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}