• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Probabilidade no jogo de Poker

Probabilidade no jogo de Poker

Mensagempor jlmanetti » Sáb Out 10, 2009 22:42

no poker texas hold'em você recebe 2 cartas e se abrem 5 sobre a mesa...

supondo que na minha mão eu tenha 7 e 8 e a minha intenção seja fazer uma sequencia, as chances de a primeira carta q for virada ser um 4,5,6,9,10,J são 48%, cada uma em si tem 8% de chances.
se sair um 4 ou J eu tenho 8/49 de chances de sair um 5,6,9,10, se sair um 5,10 o proximo tera 4/48 de chances, se sair um 6,9 o proximo tera 8/48.
se sair um 5 ou 10 eu tenho 12/49 de chances de sair um 4,6,9 ( o 6 é obrigado ) / 6,9,J ( o 9 é orbrigado ), se sair o 6 ou 9 a chance de a proxima carta sera 8/48.
se sair um 6 ou 9 eu tenho 16/49 de chances de sair um 4,5,9,10 / 5,6,10,J, se sair um 4 ou 10 / 5 ou J as chances de sair o 5 ou 9 / 6 ou 10 que completam a sequencia seriam 4/48, se sair um 5 ou 9 / 6 ou 10 as chances de sair um 4 ou 10 / 5 ou J seriam de 8/48.

creio que esteja bem completo meu pensamento e agora vem a pergunta, eu com um 7 e 8 na mão, como calculo a probabilidade de as 3 primeiras cartas que virarem completarem uma sequencia ?

gostaria que a pessoa mostrasse seu raciocinio pois n tenho ideia de como posso resumir esse pensamento em um numero concerto de x% .

Obrigado aos que me ajudarem.
jlmanetti
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Sáb Out 10, 2009 21:58
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Probabilidade no jogo de Poker

Mensagempor Elcioschin » Dom Out 11, 2009 21:28

Bem trabalhoso. Vc não disse, mas suponho que a sequência seja de 5 cartas.

a) Se a 1ª carta for um 4 (ou um J):

4 __ __ 78 ou 78 __ __ J ----> P = (0,08)² (2 vezes)

b) Se a 1ª carta for um 5 (ou um 10):

__ 5 __ 78 ou 5 __ 78 __ ou __ 78 __ 10 ou 78 __ 10 __ ----> P = (0,08)² (4 vezes)

c) Se a 1ª carta for um 6 (ou um 9):

__ __ 678 ou __ 678 __ ou 678 __ __ ou __ __789 ou __ 789 __ ou 789__ __ ----> P = (0,08)² (6 vezes)


Faça agora as contas.
Elcioschin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 624
Registrado em: Sáb Ago 01, 2009 10:49
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: formado

Re: Probabilidade no jogo de Poker

Mensagempor jlmanetti » Seg Out 12, 2009 12:47

me desculpe mas infelizmente não consegui entender o seu raciocinio... talvez você pudesse facilitalo um pouco.

Muito obrigado.
jlmanetti
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Sáb Out 10, 2009 21:58
Formação Escolar: ENSINO MÉDIO
Andamento: cursando


Voltar para Estatística

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D