• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Estátistica aplicada - Cont 5 Exer. 1

Estátistica aplicada - Cont 5 Exer. 1

Mensagempor Rene » Qui Mar 14, 2013 17:01

Pessoal tentei resolver a seguinte questão abaixo de várias formas mas não consegui,alguem poderia me ajudar por favor?

1) Certos transistores fabricados por certa empresa têm uma vida média de 800 horas e desvio padrão de 60 horas. Determinar a probabilidade de uma amostra aleatória de 16 válvulas retiradas de o grupo ter uma vida média entre 790 e 810 horas

A) 50,28%
B) 35,68%
C)99,72%
D)35,72%
E)49,72%

Cheguei perto da alternativa "B", mas não sei se é a correta...alguem sabe me dizer como chegar ao resultado correto?

Obrigado pessoal!
Rene
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Qui Mar 14, 2013 16:32
Formação Escolar: GRADUAÇÃO
Área/Curso: Administração
Andamento: cursando

Voltar para Estatística

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}