• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Quantos triângulos são possíveis formar

Quantos triângulos são possíveis formar

Mensagempor alexandre32100 » Qui Set 09, 2010 21:10

Quantos triângulos distintos são possíveis formar unindo três dos pontos da figura abaixo?
015097e7040534cfa4fc56bbf488c08b.gif
015097e7040534cfa4fc56bbf488c08b.gif (1.31 KiB) Exibido 1946 vezes
alexandre32100
 

Re: Quantos triângulos são possíveis formar

Mensagempor Elcioschin » Qui Set 09, 2010 22:51

Considere o seguinte

a) A linha horizontal do centro centro tem 4 pontos
b) O lado esquerdo da letra A tem 4 pontos (excluido o do centro e o vértice)
c) O lado direito tem 4 pontos (excluindo o do centro e o vértice)
d) Um ponto isolado do vértice

1) Triângulo formado pelo ponto isolado do vértice (1) e 2 dos 4 pontos do centro -----> 1*C(4, 2) = 1*6 = 6

2) Triângulos formados por 1 ponto das laterais (4 + 4) e os dois pontos isolados do centro ----> 8*1 = 8

3) Triângulos formados por 1 ponto do centro (2) e dois pontos dos 8 das laterais ----> 2*C(8, 2) = 2*28 = 56

4) Triângulos formados por 1 ponto de uma lateral (4) e 2 da outra lateral ----> 2*4*C(4, 2) = 2*4*6 = 48

N = 6 + 8 + 56 + 48 ----> N = 118
Elcioschin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 624
Registrado em: Sáb Ago 01, 2009 10:49
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: formado

Re: Quantos triângulos são possíveis formar

Mensagempor Douglasm » Qui Set 09, 2010 23:06

Eu discordo do Elcioschin. Sua abordagem não considera, por exemplo, a combinação de pontos "vértice+lateral+centro". Uma maneira mais direta de calcular isso, seria combinar os 13 pontos 3 a 3, descontando os casos em que os pontos são colineares (Isto ocorre nas linhas que formam a letra "A"). Logo:

N = \binom{13}{3} - 2.\binom{6}{3} - \binom{4}{3} = 242\;\mbox{possibilidades}
Avatar do usuário
Douglasm
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 270
Registrado em: Seg Fev 15, 2010 10:02
Formação Escolar: ENSINO MÉDIO
Andamento: formado


Voltar para Estatística

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59