• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Dúvida probabilidade

Dúvida probabilidade

Mensagempor RJ1572 » Seg Mai 03, 2010 15:24

Boa tarde.

Estou tentando fazer este probl e n chego a esse resultado do gabarito de forma alguma...

Um armário tem 8 repartições, em 4 níveis, como mostra a figura abaixo. Ocupando-se metade das repartições, a probabilidade de que se tenha uma repartição ocupada por nível é?

A figura é um armário com 4 estantes e uma divisão em cada estante (que resulta em 2 repartições por estante)

A resposta seria 8/35.
RJ1572
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 36
Registrado em: Sex Fev 26, 2010 13:00
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Dúvida probabilidade

Mensagempor Neperiano » Seg Mai 03, 2010 19:01

Ola

Vou ser bem cincero não consegui chegar a resposta atraves de multiplicação, adição, etc nenhuma, entretanto há outra forma de fazer, mas trabalhosa, se quiser fazer tente.

Consiste em anotar cada possibilidade, ou seja numere de 1 a 8 as prateleiras e veja as possibilidades de ocupar metade delas, sendo cada uma em um nivel, ou seja:

1,3,5,7
2,3,5,7
E assim por diante, deve dar 8 possibilidades sobre 35 possiveis

Espero ter ajudado
Sómente os mortos conhecem o fim da guerra
"Platão"
Avatar do usuário
Neperiano
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 960
Registrado em: Seg Jun 16, 2008 17:09
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de Produção
Andamento: cursando

Re: Dúvida probabilidade

Mensagempor marcelorenato » Qui Ago 12, 2010 19:05

P = (Número de casos favoráveis) / (Total de casos)

O número de casos favoráveis será, pelo princípio fundamental da contagem: ( 2 ).( 2 ).( 2 ).( 2 ) = 16
Pois temos, em cada um dos 4 andares, 2 opções para ocupação de um único apartamento.

O número total de casos, ou seja, o número total de maneiras distintas de ocuparmos 4 (quatro) dos 8 (oito) apartamentos no prédio em questão será obtido com o cálculo de COMBINAÇÃO DE 8 QUATRO A QUATRO, cujo valor é 70 (setenta).

Conclusão: a probabilidade P será

P = 16/70 => P = 8/35
marcelorenato
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Qui Ago 12, 2010 00:05
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Engenharia e Matemática
Andamento: formado


Voltar para Estatística

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59