• Anúncio Global
    Respostas
    Exibições
    Última mensagem

probabilidade

probabilidade

Mensagempor apoliveirarj » Dom Jul 11, 2010 16:56

oi, não consigo resolver esta questão de um concurso... alguém pode me ajudar? Vlw
Paulo e Raul pegaram 10 cartas de baralho para brincar: A, 2, 3,4,5,8, 9, 10, J e Q, todas de copas. Paulo embaralhou as 10 cartas, colocou-as aleatóriamente sobre a mesa, todas voltadas para baixo, e pediu a Raul que escolhesse duas. Considerando-se que todas as cartas têm a mesma chance de serem escolhidas, qual a probabilidade de que, nas duas cartas escolhidas por Raul, esteja escrita uma letra (A,J ou Q)?
apoliveirarj
Usuário Ativo
Usuário Ativo
 
Mensagens: 16
Registrado em: Sáb Jul 03, 2010 21:52
Formação Escolar: GRADUAÇÃO
Área/Curso: marketing
Andamento: cursando

Re: probabilidade

Mensagempor Elcioschin » Dom Jul 11, 2010 22:24

Total de possibilidades = C(10, 2) = 45

Chances de NÃO sair = C(7, 2) = 21

Chances de sair = 45 - 21 = 24

Probabilidade de sair ----> P = 24/45 ----> P = 8/15 ----> P ~= 53%
Elcioschin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 624
Registrado em: Sáb Ago 01, 2009 10:49
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: formado

Re: probabilidade

Mensagempor Anderson POntes » Dom Jul 11, 2010 22:29

ELIO DESCULPE A MINHA IGNORANCIA MAS VC PODERIA DETALHAR + COMO VC CHEGOU NESSE RESULTADO?
Anderson POntes
Usuário Ativo
Usuário Ativo
 
Mensagens: 24
Registrado em: Qui Jul 08, 2010 17:53
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: tecnico eletrotécnica
Andamento: formado

Re: probabilidade

Mensagempor Tom » Dom Jul 11, 2010 22:38

Consideraremos que as cartas são escolhidas simultaneamente.

Por definição, P(x)=\dfrac{n(X)}{n(\Omega)} , onde n(x) é o número de casos em que o evento x acontece e n(\Omega) é o número de casos possíveis.

Seja P(x) a probabilidade de que esteja escrita uma letra (A,J ou Q) dentre as cartas escolhidas;

Calculemos n(\Omega):
Basta calcular o número de combinações das dez cartas tomadas duas a duas, isto é: \binom{10}{2}=45


Calculemos n(X):

i)Considerando que uma das cartas é o "A", a outra carta escolhida pode ser uma das restantes, assim: 9 combinações.
ii)Considerando que uma das cartas é o "J", a outra carta escolhida pode ser umas das oito restantes já que contabilizamos o par (A,J) no item anterior. Assim: 8 combinações.
iii)Considerando que uma das cartas é o "Q", analogamente teremos 7 combinações.

Assim, n(X)=9+8+7=24

Por fim, P(X)=\dfrac{24}{45}, isto é, P(X)=\dfrac{8}{15}


Uma nota importante é que, se considerarmos a ordem em que as cartas são escolhidas, isto é, as cartas não são escolhidas simultaneamente, obteremos outro valor, conforme abaixo:

Como todas a escolha de qualquer carta é equiprovável, temos:

Na primeira carta, a probabilidade de escolher "A,Q,J" é \dfrac{3}{10}

Na segunda carta, a probabilidade de escolher "A,Q,J" é \dfrac{2}{10} porque uma dentre essas foi escolhida anteriormente.

Assim, P(x)=\dfrac{3}{50}
Tom
Tom
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 75
Registrado em: Sex Jul 02, 2010 00:42
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Automação e Controle Industrial
Andamento: formado


Voltar para Estatística

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}