por gustavowelp » Seg Jun 28, 2010 07:40
Bom dia pessoal (especialmente ao Sr. Molina, que responde com muita presteza!).
Já tinha feito uma questão parecida com esta, mas não entendi o enunciado, pois ele pergunta quantos quilômetros serão percorridos. Mas por quem?
Segue o enunciado:
O caminho A tem 1km de extensão, B tem 1,2 km, C tem 1,5 km, D tem 2 km e E tem 3 km. Antônio vai dar voltas pelo caminho A, Bernardo por B, Carlos por C, Daniel por D e Edson pelo caminho E. Todos vão sair de O no mesmo instante e caminhar com a mesma velocidade. Os cinco chegarão de novo no ponto O, ao mesmo tempo, depois de percorrerem a seguinte distância, em quilômetros: ?
Só para informar, a resposta correta é 6km. (Mas o que significa esses 6km? A distância que algum caminhou? A soma das distâncias de todos - que não dá; A distância daquele que caminhou mais?
Pensei assim:
A - 1,0
B = 1,2
C = 1,5
D = 2,0
E = 3
Nesse caso, nenhum passa pelo ponto O. Por exemplo, ninguém chegará junto antes de o E ter completado, ou seja, o mínimo a ser percorrido pelo E teria que ser 3.
Mas o D já terá caminhado 1km a mais (segunda volta)
Aí somei uma volta para cada (esta são as distâncias de cada um após a segunda volta):
A = 1,0 => 2,0
B = 1,2 => 2,4
C = 1,5 => 3,0
D = 2,0 => 4,0
E = 3,0 => 6,0
O A, o C e o E chegariam juntos. Mas se são 6km a resposta certa, o B, nesse caso, teria passado 400m... E o "E" já percorreu 6km... O "D" já teria passado 1km (segunda volta...)
Não consegui me fazer entender...
Obrigado a todos pela ajuda!
-
gustavowelp
- Usuário Parceiro

-
- Mensagens: 91
- Registrado em: Sex Jun 25, 2010 20:40
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Ciência da Computação
- Andamento: formado
por Douglasm » Seg Jun 28, 2010 11:42
Essa questão é simples: Cada um dos rapazes, está com a
MESMA VELOCIDADE, sendo assim, num determinado intervalo de tempo (que seria o tempo que leva da saída deles ao reencontro) eles percorrerão a MESMA DISTÂNCIA. Como eles dão VOLTAS, ao final de uma delas, eles estão de volta ao ponto O. Logo, a questão pede que você determine, a distância que todos haviam percorrido no momento em que ocorreu o encontro dos 5 indivíduos. Isso nada mais é que o menor múltiplo comum entre as distâncias. Observe os múltiplos delas (entenda-os como as distâncias que cada um percorreu após 1, 2, 3,..., voltas e que os leva de volta ao ponto O):





Vemos que 6,0 km é a menor distância que todos terão percorrido ao se encontrarem pela primeira vez.
-

Douglasm
- Colaborador Voluntário

-
- Mensagens: 270
- Registrado em: Seg Fev 15, 2010 10:02
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
por gustavowelp » Seg Jun 28, 2010 11:48
Muito obrigado Douglas.
Quanto mais faço exercício, mais "burrito" vejo que sou...
Valeu mesmo pela atenção.
É muito legal ter gente como vocês para nos auxiliarem
Um abraço!!!
PS: Nesse caso, o último percurso meio que "entrega" a resposta, certo? Tudo tem que ser múltiplo de 3, correto?
-
gustavowelp
- Usuário Parceiro

-
- Mensagens: 91
- Registrado em: Sex Jun 25, 2010 20:40
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Ciência da Computação
- Andamento: formado
por Douglasm » Seg Jun 28, 2010 11:51
Na verdade de 6, que é o menor múltiplo comum de todos esses números. Evidentemente a resposta é múltipla de 3, de 2, de 1,5...ao mesmo tempo.
-

Douglasm
- Colaborador Voluntário

-
- Mensagens: 270
- Registrado em: Seg Fev 15, 2010 10:02
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
Voltar para Estatística
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Distâncias]
por renan_a » Sáb Out 20, 2012 12:13
- 5 Respostas
- 2337 Exibições
- Última mensagem por young_jedi

Sáb Out 20, 2012 17:02
Geometria Analítica
-
- minimizar a soma das distâncias
por gutorocher » Sex Ago 20, 2010 17:03
- 0 Respostas
- 1067 Exibições
- Última mensagem por gutorocher

Sex Ago 20, 2010 17:03
Geometria Analítica
-
- É isso mesmo?
por Cleyson007 » Ter Mai 08, 2012 17:23
- 1 Respostas
- 1488 Exibições
- Última mensagem por pedroaugustox47

Sex Mai 11, 2012 03:25
Álgebra Elementar
-
- Probabilidade de fazer aniversario no mesmo dia
por heltonmichael » Seg Ago 03, 2009 02:10
- 2 Respostas
- 5811 Exibições
- Última mensagem por Elcioschin

Seg Ago 17, 2009 10:57
Desafios Fáceis
-
- Você quer mesmo ser cientista?
por LuizAquino » Sex Out 05, 2012 12:14
- 0 Respostas
- 3295 Exibições
- Última mensagem por LuizAquino

Sex Out 05, 2012 12:14
Assuntos Gerais ou OFF-TOPIC
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.