• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Diferentes Distâncias - Chegada no Mesmo Ponto

Diferentes Distâncias - Chegada no Mesmo Ponto

Mensagempor gustavowelp » Seg Jun 28, 2010 07:40

Bom dia pessoal (especialmente ao Sr. Molina, que responde com muita presteza!).

Já tinha feito uma questão parecida com esta, mas não entendi o enunciado, pois ele pergunta quantos quilômetros serão percorridos. Mas por quem?

Segue o enunciado:

O caminho A tem 1km de extensão, B tem 1,2 km, C tem 1,5 km, D tem 2 km e E tem 3 km. Antônio vai dar voltas pelo caminho A, Bernardo por B, Carlos por C, Daniel por D e Edson pelo caminho E. Todos vão sair de O no mesmo instante e caminhar com a mesma velocidade. Os cinco chegarão de novo no ponto O, ao mesmo tempo, depois de percorrerem a seguinte distância, em quilômetros: ?

Só para informar, a resposta correta é 6km. (Mas o que significa esses 6km? A distância que algum caminhou? A soma das distâncias de todos - que não dá; A distância daquele que caminhou mais?

Pensei assim:
A - 1,0
B = 1,2
C = 1,5
D = 2,0
E = 3

Nesse caso, nenhum passa pelo ponto O. Por exemplo, ninguém chegará junto antes de o E ter completado, ou seja, o mínimo a ser percorrido pelo E teria que ser 3.
Mas o D já terá caminhado 1km a mais (segunda volta)

Aí somei uma volta para cada (esta são as distâncias de cada um após a segunda volta):
A = 1,0 => 2,0
B = 1,2 => 2,4
C = 1,5 => 3,0
D = 2,0 => 4,0
E = 3,0 => 6,0

O A, o C e o E chegariam juntos. Mas se são 6km a resposta certa, o B, nesse caso, teria passado 400m... E o "E" já percorreu 6km... O "D" já teria passado 1km (segunda volta...)

Não consegui me fazer entender...

Obrigado a todos pela ajuda!
gustavowelp
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 91
Registrado em: Sex Jun 25, 2010 20:40
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Ciência da Computação
Andamento: formado

Re: Diferentes Distâncias - Chegada no Mesmo Ponto

Mensagempor Douglasm » Seg Jun 28, 2010 11:42

Essa questão é simples: Cada um dos rapazes, está com a MESMA VELOCIDADE, sendo assim, num determinado intervalo de tempo (que seria o tempo que leva da saída deles ao reencontro) eles percorrerão a MESMA DISTÂNCIA. Como eles dão VOLTAS, ao final de uma delas, eles estão de volta ao ponto O. Logo, a questão pede que você determine, a distância que todos haviam percorrido no momento em que ocorreu o encontro dos 5 indivíduos. Isso nada mais é que o menor múltiplo comum entre as distâncias. Observe os múltiplos delas (entenda-os como as distâncias que cada um percorreu após 1, 2, 3,..., voltas e que os leva de volta ao ponto O):

1,0\;\rightarrow\;1,0\;;\;2,0\;\;3,0\;;\;4,0\;;\;5,0\;;\;\fbox{6,0}\;;\;(...)

1,2\;\rightarrow\;1,2 \;;\;2,4\;\;3,6\;;\;4,8\;;\;\fbox{6,0}\;;\;(...)

1,5\;\rightarrow\;1,5\;;\;3,0\;\;4,5\;;\;\fbox{6,0}\;;\;(...)

2,0\;\rightarrow\;2,0\;;\;4,0\;\;\fbox{6,0}\;;\;(...)

3,0\;\rightarrow\;3,0\;;\;\fbox{6,0}\;;\;(...)

Vemos que 6,0 km é a menor distância que todos terão percorrido ao se encontrarem pela primeira vez.
Avatar do usuário
Douglasm
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 270
Registrado em: Seg Fev 15, 2010 10:02
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Diferentes Distâncias - Chegada no Mesmo Ponto

Mensagempor gustavowelp » Seg Jun 28, 2010 11:48

Muito obrigado Douglas.

Quanto mais faço exercício, mais "burrito" vejo que sou...

Valeu mesmo pela atenção.

É muito legal ter gente como vocês para nos auxiliarem

Um abraço!!!

PS: Nesse caso, o último percurso meio que "entrega" a resposta, certo? Tudo tem que ser múltiplo de 3, correto?
gustavowelp
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 91
Registrado em: Sex Jun 25, 2010 20:40
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Ciência da Computação
Andamento: formado

Re: Diferentes Distâncias - Chegada no Mesmo Ponto

Mensagempor Douglasm » Seg Jun 28, 2010 11:51

Na verdade de 6, que é o menor múltiplo comum de todos esses números. Evidentemente a resposta é múltipla de 3, de 2, de 1,5...ao mesmo tempo.
Avatar do usuário
Douglasm
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 270
Registrado em: Seg Fev 15, 2010 10:02
Formação Escolar: ENSINO MÉDIO
Andamento: formado


Voltar para Estatística

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D