• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Que teste usar numa população não normal

Que teste usar numa população não normal

Mensagempor citadp » Ter Jan 21, 2014 08:20

Olá ! Estou aqu de volta de um exercicio no qual não sei bem qual o teste certo a usar, o exercicio é o seguinte:
É utilizado um teste para medir a sabedoria dos alunos, a media nesse teste é 32. Um professor afirma que a média é superior, as pontuações obtidas no teste por 44 alunos tiveram média = 35.1 e s= 11.19.
Faça um teste para saber se o professor tem razao. e calcule o valor de p.

A amostra é 14,14,15,18,19,19,25,26,26,27,27,28,29,31,33,33,34,34,35,35,35,35,38,39,40,40,41,41,42,43,44,45,46,46,47,47,48,49,51,52,52,54

Inicialmente ia fazer este teste z = (p^-p0)/\sqrt[]{(p0(1-p0)/n)}

Mas não estou a conseguir perceber qual o valor de p^ .
Mas olhando para o formulário acho que se adequa este teste, Z= \frac{media - uo}{s / \sqrt[]{n}}., embora agora não sei se para este teste use n = 44, para toda a amostra, ou só superior a 32 , que será n=28.

Estou a pensar bem ? Obrigada
citadp
Usuário Ativo
Usuário Ativo
 
Mensagens: 14
Registrado em: Sáb Jun 02, 2012 13:11
Formação Escolar: SUPLETIVO
Área/Curso: Informática
Andamento: cursando

Voltar para Estatística

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.