• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Probabilidade - Teorema de Bayes

Probabilidade - Teorema de Bayes

Mensagempor sergiomk86 » Qua Dez 22, 2010 19:17

Caros, não consigo chegar à resposta oficial [0,62] de forma alguma. Tentei via Bayes e pela árvore (que dá no mesmo). Alguma luz? Obrigado!

Em um determinado município, 20% de todos os postos de gasolina testados quanto à qualidade do combustível apontaram
o uso de combustíveis adulterados. Ao serem testados, 99% de todos os postos desse município que adulteraram combustível foram reprovados, mas 15% dos que não adulteraram também foram reprovados, ou seja, apresentaram um resultado falso-positivo. A probabilidade de um posto reprovado ter efetivamente adulterado o combustível é, aproximadamente,...
sergiomk86
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Qua Dez 22, 2010 19:13
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Probabilidade - Teorema de Bayes

Mensagempor Mppl » Qui Jan 27, 2011 07:10

Considere os seguintes acontecimentos:
A-ter adulterado o combustivel (A de adulterado)
R-ser reprovado(R de reprovado)
R'-nao ser reprovado
A' nao ser adulterado

Pelos dados do problema:
P(A)=0.2
P(A e R)=0.2*0.99=0.198
P(A' e R)=0.15*0.8=0.12

O que o problema pede é a probabilidade de dado que é reprovado qual e a probabilidade de ser adulterado: P(A dado R)=P(A e R)/P(R)

Ora bem, um combustivel quando é reprovado ou está adulterado ou não está (não ha meio termo!) Portanto todos os combustiveis reprovados ou sao reprovados e são ao mesmo tempo adulterados (A e R) ou sao reprovados e são ao mesmo tempo não adulterados (A' e R)
entao: P(R)=P(A e R) + P(A' e R)=0.198+0.12=0.318

se voltarmos ao que o problema pede: P(A dado R)=P(A e R)/P(R)=[P(A e R)]/[P(A e R) + P(A' e R)]=0.198/0.318=0.62 tal como pretendia :)

espero ter ajudado.
Mppl
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Qua Jan 26, 2011 21:04
Formação Escolar: SUPLETIVO
Área/Curso: Física
Andamento: cursando

Re: Probabilidade - Teorema de Bayes

Mensagempor junedm » Ter Set 24, 2013 16:07

Amigos, vocês vão me desculpas, mas essa resolução pode ter até chegado na resposta, mas certa ela não está.

O enunciado fala: Em um determinado município, 20% de todos os postos de gasolina testados quanto à qualidade do combustível apontaram
o uso de combustíveis adulterados.

Ou seja, 20% não é a probabilidade de estar adulterado, mas sim a probabilidade de ser reprovado. O amigo Mppl se equivocou ao colocar que P(A) = 0,2. Na verdade, P(R) é que é 0,2.

P(A) seria 0,2 se o enunciado falasse que 20% dos postos têm gasolina adultera, o que não é o caso.

Essa questão deveria ter sido anulada uma vez que, se a resolvermos da maneira certa, chegaremos a um valor de 29,46%.

Provavelmente, a banca fez o mesmo equívoco que o colega.
junedm
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Ter Set 24, 2013 15:57
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Engenharia
Andamento: formado


Voltar para Estatística

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D