• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Preço médio

Preço médio

Mensagempor pegr » Qua Jun 05, 2013 02:46

Agradecia ajuda para resolver o seguinte exercicio com os passos e calculos necessários.
Obrigada.

EX:
-A administração de um hospital compra material de enfermagem trimestralmente.
O gasto trimestral ao longo de um determinado ano na aquisição de seringas manteve-se constante e igual a 10 000€.
Suponha que os fornecedores venderam as seringas aos seguintes preços,expressos em cêntimos por unidade:
1º trimestre:55
2º trimestre:60
3º trimestre:65
4º trimestre:90

*Calcule o preço médio das seringas adquiridas pelo hospital ao longo do ano referido.
pegr
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Qua Jun 05, 2013 02:39
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Andamento: cursando

Re: Preço médio

Mensagempor pegr » Ter Jun 18, 2013 18:19

será que nenhuma alma caridosa é capaz de resolver meus topicos de estatistica!!!!!!!!!!!!!!!!!
pegr
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Qua Jun 05, 2013 02:39
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Andamento: cursando

Re: Preço médio

Mensagempor Pessoa Estranha » Qui Jul 18, 2013 19:45

Olá. Olha, eu resolvi a sua questão apesar de já fazer mais de um mês que você enviou. Não sei se o que eu fiz está correto, mas vou mostrar o meu raciocínio.

Se o hospital teve um gasto trimestral constante de 10.000€ naquele ano, então podemos dividir este por 4, já que temos 4 trimestres num ano. Daí, resulta em 2500 o gasto em cada trimestre. Há também a informação de que as seringas foram vendidas pelos seguintes valores, em cêntimos de unidade (ou seja, um centésimo da moeda usada):
1º trimestre:55
2º trimestre:60
3º trimestre:65
4º trimestre:90

De onde podemos concluir que no 1º trimestre, cada seringa foi cobrada num valor de 0,55; no 2º, de 0,60; no 3º, de 0,65; no 4º, de 0,90.
Isto significa que:
x = quantidade de seringas adquiridas no 1º trimestre;
y = quantidade de seringas adquiridas no 2º trimestre;
k = quantidade de seringas adquiridas no 3º trimestre;
p = quantidade de seringas adquiridas no 4º trimestre;

x.0,55+y.0,60+k.0,65+p.0,90=10000

Então, podemos fazer o seguinte:

x.0,55 = 2500 \rightarrow x \approx 454
y.0,60 = 2500 \rightarrow x \approx 416
k.0,65 = 2500 \rightarrow x \approx 384
p.0,90 = 2500 \rightarrow x \approx 277

Daí,

454 + 416 + 384 + 277 = 1531

E,

\frac{1531}{10000} \approx 0,15

Espero que o gabarito seja: um preço médio de 0,15 por seringa.

Desculpe se estiver errado!
Pessoa Estranha
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 262
Registrado em: Ter Jul 16, 2013 16:43
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando


Voltar para Estatística

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?