por Rene » Qui Mar 14, 2013 17:13
Pessoal, eu não sei nem por onde começar com o exercicio abaixo, será que alguem pode me dar um help pls?
O peso dos fardos recebidos por um determinado depósito tem uma média de 150 kg e um desvio padrão de 25 kg. Qual é a probabilidade de que 25 fardos recebidos ao acaso e carregados em um elevador exceder o limite especifico de segurança deste, que é de 4100 kg.
(a)0,26%
(b)0,32%
(c)26,0%
(d)37,0%
(e)0,55%
Obrigado!
-
Rene
- Novo Usuário

-
- Mensagens: 3
- Registrado em: Qui Mar 14, 2013 16:32
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Administração
- Andamento: cursando
Voltar para Estatística
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Estátistica aplicada - Cont 5 Exer. 1
por Rene » Qui Mar 14, 2013 17:01
- 0 Respostas
- 2386 Exibições
- Última mensagem por Rene

Qui Mar 14, 2013 17:01
Estatística
-
- Estátistica aplicada - Cont 5 Exer. 3
por Rene » Qui Mar 14, 2013 17:35
- 0 Respostas
- 3494 Exibições
- Última mensagem por Rene

Qui Mar 14, 2013 17:35
Estatística
-
- Estatística Aplicada
por Ursa CTA » Sex Set 12, 2008 20:42
- 1 Respostas
- 6688 Exibições
- Última mensagem por Ursa CTA

Sex Set 12, 2008 20:43
Dúvidas Pendentes (aguardando novos colaboradores)
-
- Estatística e Matemática aplicada a Adm.
por robertsilvaa » Dom Mai 22, 2011 13:27
- 0 Respostas
- 2209 Exibições
- Última mensagem por robertsilvaa

Dom Mai 22, 2011 13:27
Estatística
-
- Probabilidade Estatística Aplicada - Necessito de ajuda!
por MARCION9 » Ter Mai 12, 2015 19:45
- 1 Respostas
- 7710 Exibições
- Última mensagem por MARCION9

Dom Mai 17, 2015 18:57
Estatística
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.