por ibatexano » Dom Set 13, 2009 02:07
um problema que não consigo resolver :
Uma bandeira é formada de 7 listras,que devem ser pintadas de 3 cores diferentes.de quantas maneiras distintas sera possivel pintá-la de modo que duas listras adjacentes nunca estejam pintadas da mesma cor?
se fosse 7 cores e 3 listras,seria assim o raciocinio:cada bandeira consiste de uma sequencia de 3 cores distintas,

.
mas o numero de bandeiras é maior que o numero de cores,as cores se repetiriam,sequência de 7 cores,

.
não consigo achar uma maneira de resolver!me ajudem se puderem,abraço!
-
ibatexano
- Usuário Ativo

-
- Mensagens: 13
- Registrado em: Dom Set 13, 2009 01:28
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
por Lucio Carvalho » Dom Set 13, 2009 08:50
Olá ibatexano,
Tentarei explicar o problema usando o diagrama de árvore e, é claro, o princípio fundamental de contagem.
Vamos supor que temos as cores A, B e C. Olhando para o diagrama de árvore (ver anexo), a 1ª listra pode ser pintada de 3 maneiras diferentes.
Após a primeira listra ser pintada com uma determinada cor, a 2ª listra só poderá ser pintada de duas maneiras diferentes. Por exemplo, se a 1ª listra for A, a segunda só poderá ser B ou C.
Após a segunda listra ser pintada, por exemplo, com a cor B, a 3ª listra só poderá ser pintada de duas maneiras diferentes (A ou C).
Como temos 7 listras, de acordo com o princípio fundamental de contagem:

Nota: Podemos repetir as cores, mas listras adjacentes não podem ter a mesma cor!
Espero ter ajudado e aguardo a opinião de outros participantes.
- Anexos
-

-

Lucio Carvalho
- Colaborador Voluntário

-
- Mensagens: 127
- Registrado em: Qua Ago 19, 2009 11:33
- Localização: Rua 3 de Fevereiro - São Tomé
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Física/Química
- Andamento: formado
por ibatexano » Dom Set 13, 2009 15:50
é isso mesmo cara,depois que eu postei essa qestão,eu tentei fazer novamentee assim mesmo!
usei aqele raciocinio do outro problema sobre bandeira de qe as bandeiras poderiam voltar,ja qe sendo o numero de elementos menor qe o numero de elementos da sequencia(listras),não teria como não repetir as cores,oqe não poderia era qe duas cores adjacentes não fossem iguais.oqe fiqei pensando era qe poderia ter uma outra forma,mas qe não tem como mesmo resolver de outra forma!
valeu ,abraço!
-
ibatexano
- Usuário Ativo

-
- Mensagens: 13
- Registrado em: Dom Set 13, 2009 01:28
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
Voltar para Estatística
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Problema das Bandeiras
por Joana Gabriela » Seg Ago 09, 2010 10:15
- 2 Respostas
- 3021 Exibições
- Última mensagem por Douglasm

Qua Ago 11, 2010 20:00
Progressões
-
- Bandeiras
por Rafael16 » Qua Jan 30, 2013 19:23
- 1 Respostas
- 1171 Exibições
- Última mensagem por young_jedi

Qua Jan 30, 2013 22:02
Probabilidade
-
- [Análise Combinatória]Cores das bandeiras.
por francisbarbosa » Seg Fev 27, 2012 20:25
- 1 Respostas
- 1588 Exibições
- Última mensagem por MarceloFantini

Ter Fev 28, 2012 09:49
Estatística
-
- Problema sobre PA
por Cleyson007 » Dom Mai 25, 2008 01:53
- 3 Respostas
- 7865 Exibições
- Última mensagem por admin

Dom Mai 25, 2008 04:31
Progressões
-
- Problema sobre Circunferência
por Cleyson007 » Dom Jun 29, 2008 01:18
- 4 Respostas
- 7149 Exibições
- Última mensagem por Cleyson007

Dom Ago 24, 2008 17:25
Geometria Plana
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
Proporcionalidade
Autor:
silvia fillet - Qui Out 13, 2011 22:46
Divida o numero 35 em partes diretamente proporcionais a 4, 10 e 14. Em seguida divida o mesmo numero em partes proporcionais a 6, 15 e 21. explique por que os resultados sao iguais.
Assunto:
Proporcionalidade
Autor:
silvia fillet - Sáb Out 15, 2011 10:25
POR GENTILEZA PODEM VERIFICAR SE O MEU RACIOCINIO ESTÁ CERTO?
P1 = K.4 SUBSTITUINDO K POR 1,25 P1= 5
P2 = K.10 SUBSTITUINDO K POR 1,25 P2= 12,50
P3 = K.13 SUBSTITUINDO K POR 1,25 P3= 17,50
P1+P2+P3 = 35
K.4+K.10+K.13 = 35
28 K = 35
K= 1,25
P1 = K.6 SUBSTITUINDO K POR 0,835 P1= 5
P2 = K.15 SUBSTITUINDO K POR 0,835 P2 = 12,50
P3 = K.21 SUBSTITUINDO K POR 0,835 P3 = 17,50
K.6+K.15+K.21 = 35
42K = 35
K= 0,833
4/6 =10/15 =14/21 RAZÃO = 2/3
SERÁ QUE ESTÁ CERTO?
ALGUEM PODE ME AJUDAR A EXPLICAR MELHOR?
OBRIGADA
SILVIA
Assunto:
Proporcionalidade
Autor:
ivanfx - Dom Out 16, 2011 00:37
utilize a definição e não se baseie no exercícios resolvidos da redefor, assim você terá mais clareza, mas acredito que sua conclusão esteja correto, pois o motivo de darem o mesmo resultado é pq a razão é a mesma.
Assunto:
Proporcionalidade
Autor:
Marcos Roberto - Dom Out 16, 2011 18:24
Silvia:
Acho que o resultado é o mesmo pq as razões dos coeficientes e as razões entre os números são inversamente proporcionais.
Você conseguiu achar o dia em que caiu 15 de novembro de 1889?
Assunto:
Proporcionalidade
Autor:
deiasp - Dom Out 16, 2011 23:45
Ola pessoal
Tb. estou no redefor
O dia da semana em 15 de novembro de 1889, acredito que foi em uma sexta feira
Assunto:
Proporcionalidade
Autor:
silvia fillet - Seg Out 17, 2011 06:23
Bom dia,
Realmente foi uma sexta feira, como fazer os calculos para chegar ?
Assunto:
Proporcionalidade
Autor:
ivanfx - Seg Out 17, 2011 07:18
Para encontrar o dia que caiu 15 de novembro de 1889 você deve em primeiro lugar encontrar a quantidade de anos bissextos que houve entre 1889 à 2011, após isso dá uma verificada no ano 1900, ele não é bissexto, pois a regra diz que ano que é múltiplo de 100 e não é múltiplo de 400 não é bissexto.
Depois calcule quantos dias dão de 1889 até 2011, basta pegar a quantidade de anos e multiplicar por 365 + 1 dia a cada ano bissexto (esse resultado você calculou quando encontrou a quantidade de anos bissextos)
Pegue o resultado e divida por 7 e vai obter o resto.
obtendo o resto e partindo da data que pegou como referência conte a quantidade do resto para trás da semana.
Assunto:
Proporcionalidade
Autor:
silvia fillet - Seg Out 17, 2011 07:40
Bom dia,
Será que é assim:
2011 a 1889 são 121 anos sendo , 30 anos bissextos e 91 anos normais então temos:
30x366 = 10.980 dias
91x365 = 33.215 dias
incluindo 15/11/1889 - 31/12/1889 47 dias
33215+10980+47 = 44242 dias
44242:7 = 6320 + resto 2
è assim, nâo sei mais sair disso.
Assunto:
Proporcionalidade
Autor:
ivanfx - Seg Out 17, 2011 10:24
que tal descontar 1 dia do seu resultado, pois 1900 não é bissexto, ai seria 44241 e quando fizer a divisão o resto será 1
como etá pegando base 1/01/2011, se reparar bem 01/01/2011 sempre cai no mesmo dia que 15/01/2011, sendo assim se 01/01/2011 caiu em um sábado volte 1 dia para trás, ou seja, você está no sábado e voltando 1 dia voltará para sexta.então 15/11/1889 cairá em uma sexta
Assunto:
Proporcionalidade
Autor:
Kiwamen2903 - Seg Out 17, 2011 19:43
Boa noite, sou novo por aqui, espero poder aprender e ajudar quando possível! A minha resposta ficou assim:
De 1889 até 2001 temos 29 anos bissextos a começar por 1892 (primeiro múltiplo de 4 após 1889) e terminar por 2008 (último múltiplo de 4 antes de 2011). Vale lembrar que o ano 1900 não é bissexto, uma vez que é múltiplo de 100 mas não é múltiplo de 400.
De um ano normal para outro, se considerarmos a mesma data, eles caem em dias consecutivos da semana. Por exemplo 01/01/2011 – sábado, e 01/01/2010 – sexta.
De um ano bissexto para outro, se considerarmos a mesma data, um cai dois dias da semana depois do outro. Por exemplo 01/01/2008 (ano bissexto) – Terça – feira, e 01/01/09 – Quinta-feira.
Sendo assim, se contarmos um dia da semana de diferença para cada um dos 01/01 dos 122 anos que separam 1889 e 2011 mais os 29 dias a mais referentes aos anos bissextos entre 1889 e 2011, concluímos que são 151 dias da semana de diferença, o que na realidade nos trás: 151:7= 21x7+4, isto é, são 4 dias da semana de diferença. Logo, como 15/11/2011 cairá em uma terça-feira, 15/11/1889 caiu em uma sexta-feira.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.