• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Distribuição Poisson

Distribuição Poisson

Mensagempor cardosor23 » Qua Mai 16, 2012 19:55

Olá,

Tenho um exercício que me diz que o numero de crianças que vão a um parque de diversões por hora, processa-se de acordo com uma distribuição de Poisson.

1hora = 15 crianças = probabilidade 0.031.
1hora = 16 crianças = probabilidade 0.062.

Como é que posso determinar a média de crianças que chegam por hora?

Abraço
cardosor23
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Seg Mar 26, 2012 19:26
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Informática
Andamento: cursando

Re: Distribuição Poisson

Mensagempor Neperiano » Ter Ago 07, 2012 14:19

Olá

Olha só, você sabe que com probabilidade de 31% 15 crianças chegam em 1 hora, e que com 62% 16 crianças, ou seja, você duplicou e aumentou uma criança.

Você deve de alguma forma chegar a probabilidade de 100%.

Não me lembro mais de Poisson, vou dar uma olhada, mas talvez dê para fazer instintivamente, 31 - 15, 62 - 16, 93 - 17

Mais ou menos 17 crianças.

Mas vou estudar.

Att
Sómente os mortos conhecem o fim da guerra
"Platão"
Avatar do usuário
Neperiano
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 960
Registrado em: Seg Jun 16, 2008 17:09
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de Produção
Andamento: cursando


Voltar para Estatística

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}