por Pri Ferreira » Qua Mar 21, 2012 13:34
Seja n o número total de anagramas da palavra
BOTAFOGO, que contêm as 4 consoantes em ordem
alfabética. O valor de n é igual a:
(A) 520
(B) 280
(C) 480
(D) 340
Por favor, gostaria muito de ver a resolução!!!
-
Pri Ferreira
- Usuário Parceiro

-
- Mensagens: 59
- Registrado em: Qua Out 19, 2011 20:53
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática
- Andamento: formado
por LuizAquino » Sáb Mar 31, 2012 16:00
Pri Ferreira escreveu:Seja n o número total de anagramas da palavra
BOTAFOGO, que contêm as 4 consoantes em ordem
alfabética. O valor de n é igual a:
(A) 520
(B) 280
(C) 480
(D) 340
As quatro consoantes em ordem alfabética: B, F, G e T.
A palavra BOTAFOGO tem 8 letras. Precisamos escolher 4 posições para colocar as consoantes. Temos ao todo

possibilidades.
Depois de escolhidas as posições para as consoantes, teremos que preencher as outras 4 posições com os anagramas formados por quatro letras: O, A, O e O.
O que você deve se perguntar é: quantas anagramas eu posso formar com as quatro letras O, A, O e O? Note que isso é uma permutação com repetição.
Agora tente terminar o exercício.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
por Pri Ferreira » Seg Abr 09, 2012 19:52
Olá, muito obrigada pela ajuda!!!
Nessa questão ainda naum entendi uma coisa...Isso está certo:

pq dá 1 sobre alguma coisa...
E na permutação com repetição o q encontrei foi

, já que são 3 os e 1 a, é isso msm???
Desde já, mt obrigada pela ajuda!!
-
Pri Ferreira
- Usuário Parceiro

-
- Mensagens: 59
- Registrado em: Qua Out 19, 2011 20:53
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática
- Andamento: formado
por LuizAquino » Seg Abr 09, 2012 23:30
Pri Ferreira escreveu:Nessa questão ainda naum entendi uma coisa...Isso está certo:

pq dá 1 sobre alguma coisa...
Está errado. Desculpe-me, mas foi um erro de digitação. O correto seria:

.
Pri Ferreira escreveu:E na permutação com repetição o q encontrei foi

, já que são 3 os e 1 a, é isso msm???
Não é isso. Como são 4 letras (O, A, O e O), sendo 3 repetidas, temos então

anagramas.
Agora tente terminar o exercício.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
Voltar para Estatística
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Arranjo ! URGENTEEEEE
por my2009 » Qui Jun 03, 2010 19:08
- 3 Respostas
- 1507 Exibições
- Última mensagem por my2009

Sex Jun 04, 2010 23:07
Estatística
-
- Arranjo ou combinação?
por cristina » Sex Ago 27, 2010 11:41
- 3 Respostas
- 2194 Exibições
- Última mensagem por profmatematica

Sáb Ago 28, 2010 05:08
Estatística
-
- Arranjo ou Combinação?
por gustavowelp » Sex Nov 19, 2010 07:22
- 2 Respostas
- 1314 Exibições
- Última mensagem por gustavowelp

Sex Nov 19, 2010 13:36
Estatística
-
- Probabilidade de um arranjo
por ihavenokia » Qua Out 26, 2011 15:12
- 2 Respostas
- 1893 Exibições
- Última mensagem por jose henrique

Qua Out 26, 2011 21:05
Progressões
-
- Arranjo ou combinação??
por matpet92 » Dom Fev 12, 2012 12:40
- 2 Respostas
- 1360 Exibições
- Última mensagem por matpet92

Dom Fev 12, 2012 17:49
Estatística
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.