• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Análise Combinatória (Arranjo)

Análise Combinatória (Arranjo)

Mensagempor Anderson Alves » Qui Mar 15, 2012 22:38

Olá galera.
Estou com dificuldades para reolver esse exercício:

1) Com os algarismos de 1 a 8, qual a posição do número 358 se escrevemos todas as centenas diferentes e sem algarismos repetidos em ordem crescente?

Resp.: 108º

Ficarei grato pela ajuda..
Anderson Alves
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 29
Registrado em: Sex Fev 24, 2012 22:39
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Curso Técnico em Informática
Andamento: formado

Re: Análise Combinatória (Arranjo)

Mensagempor fraol » Qui Mar 15, 2012 23:13

As possibilidades são:

1) Números começando com 1, na forma 1 __ __ = 7 x 6 = 42 números
2) Números começando com 2, na forma 2 __ __ = 7 x 6 = 42 números
3) Números começando com 3, na forma 3 __ __ = 4 x 6 = 24 números
Total = 108.

Veja que no caso 3, para o segundo dígito temos 4 possibilidades: 1, 2, 4 e 5
e para o terceiro dígito temos 6 possibilidades: dos oito dígitos possíveis você deve retirar o 3 da primeira posição e o dígito usado na segunda posição.
fraol
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 392
Registrado em: Dom Dez 11, 2011 20:08
Localização: Mogi das Cruzes-SP
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: formado


Voltar para Estatística

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.