• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Análise Combinatória (Arranjo)

Análise Combinatória (Arranjo)

Mensagempor Anderson Alves » Qui Mar 15, 2012 22:38

Olá galera.
Estou com dificuldades para reolver esse exercício:

1) Com os algarismos de 1 a 8, qual a posição do número 358 se escrevemos todas as centenas diferentes e sem algarismos repetidos em ordem crescente?

Resp.: 108º

Ficarei grato pela ajuda..
Anderson Alves
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 29
Registrado em: Sex Fev 24, 2012 22:39
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Curso Técnico em Informática
Andamento: formado

Re: Análise Combinatória (Arranjo)

Mensagempor fraol » Qui Mar 15, 2012 23:13

As possibilidades são:

1) Números começando com 1, na forma 1 __ __ = 7 x 6 = 42 números
2) Números começando com 2, na forma 2 __ __ = 7 x 6 = 42 números
3) Números começando com 3, na forma 3 __ __ = 4 x 6 = 24 números
Total = 108.

Veja que no caso 3, para o segundo dígito temos 4 possibilidades: 1, 2, 4 e 5
e para o terceiro dígito temos 6 possibilidades: dos oito dígitos possíveis você deve retirar o 3 da primeira posição e o dígito usado na segunda posição.
fraol
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 392
Registrado em: Dom Dez 11, 2011 20:08
Localização: Mogi das Cruzes-SP
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: formado


Voltar para Estatística

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.