• Anúncio Global
    Respostas
    Exibições
    Última mensagem

PROVA?? PRINCIPIO DOS POMBOS

PROVA?? PRINCIPIO DOS POMBOS

Mensagempor nicoguitarreiro » Sáb Out 29, 2011 14:34

questão: (a) Mostre que se cinco numeros inteiros são selecionados a partir dos oito primeiros numeros inteiros positivos, deverá haver um par desses inteiros cuja soma seja igual a 9.
(b)A conclusão do item (a) será verdadeira se quatro inteiros, em vez de cinco, forem selecionados?

REPOSTAS
(a) seja o conjunto {1,2,3,4,5,6,7,8} dos primeiros 8 numeros inteiros positivos. ao retirar quaisquer dois numeros a e b
teremos esses numero 3 <= a+b <=15. assim existem 13 pares com numeros diferentes possiveis. para a+b=9 existem 4 pares possiveis. ou seja 13-4= 9 pares diferentes que a soma de a+b # 9. como(usando analise combinatoria) podemos retirar 5x4 /2 =10 pares diferente de um conjunto de 5 numeros do conjunto entao temos 10/9(10 pombos para 9 casas), assim sempre terá um par a+b=9.

(b) para 4 numeros retirados do conjunto teremos(usando analise combinatoria) 4x3/2=6 pares possiveis. como existem 9 pares de numeros que a soma é diferente de nove, temos 6/9(quatro casas sem pombos), assim a conclusão anterior não seria verdadeira.



PERGUNTO: ESTÁ CORRETO ESTAS RESPOSTAS?
nicoguitarreiro
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Sáb Out 29, 2011 13:21
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: PROVA?? PRINCIPIO DOS POMBOS

Mensagempor nicoguitarreiro » Sáb Out 29, 2011 14:36

QUESTAO 13, DO CAPITULO 5.2, MATEMATICA DISCRETA 6ED KENNETH H.ROSEN
nicoguitarreiro
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Sáb Out 29, 2011 13:21
Formação Escolar: GRADUAÇÃO
Andamento: cursando


Voltar para Estatística

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}