por cortes » Seg Jun 08, 2009 22:46
Favor verifiquem se estou no caminho certo
Um exame estatístico com uma hora de duração revelou os seguintes resultados:
Limites Freq. Absoluta Simples F
20| 30 2 2
30| 40 2 4
40| 50 3 7
50| 60 8 15
60| 70 15 30
70| 80 10 40
80| 90 10 50
50
Calcule:
O primeiro Quartil? Q1
25.50/100=12,50
(K.?fi)/4=1,50/4=12,50
Q1=60+ ([12,50-70].2)/15
Q1=60+ ([-57,50].2)/15=60+[-7,67]=52,33
Q1=52,33min
P60=60.50/100=30
6º decil= 70
-
cortes
- Usuário Ativo

-
- Mensagens: 11
- Registrado em: Seg Mai 25, 2009 23:43
- Formação Escolar: GRADUAÇÃO
- Área/Curso: contabeis
- Andamento: cursando
por Neperiano » Dom Ago 14, 2011 20:01
Ola
A princípio sim, eu só achei 52.33 meio baixo, porque tenque dae 12,5 e antes de chegar em 50 tem 7, então dos 8 pra fecha 12,50 tenque usar 4,50, então eu botaria perto de 55.
Atenciosamente
Sómente os mortos conhecem o fim da guerra
"Platão"
-

Neperiano
- Colaborador Voluntário

-
- Mensagens: 960
- Registrado em: Seg Jun 16, 2008 17:09
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia de Produção
- Andamento: cursando
Voltar para Estatística
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Estatística] Questão de estatistica
por blinkerhope » Dom Out 16, 2011 15:04
- 1 Respostas
- 8666 Exibições
- Última mensagem por Neperiano

Dom Out 16, 2011 17:01
Estatística
-
- [Estatística] Questão de estatística
por antimaxbr » Ter Set 24, 2013 15:02
- 1 Respostas
- 13704 Exibições
- Última mensagem por Paula Laena

Qua Ago 24, 2016 15:55
Estatística
-
- estatistica I
por ehrefundini » Ter Abr 29, 2008 23:11
- 1 Respostas
- 4083 Exibições
- Última mensagem por admin

Qui Mai 01, 2008 15:04
Pedidos de Materiais
-
- Estatística
por Rpvier » Qui Dez 18, 2008 11:17
- 3 Respostas
- 4786 Exibições
- Última mensagem por Neperiano

Qua Nov 09, 2011 16:15
Estatística
-
- EStatistica
por cortes » Seg Jun 08, 2009 22:42
- 1 Respostas
- 3440 Exibições
- Última mensagem por Neperiano

Qui Set 01, 2011 17:43
Estatística
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.