• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Combinatória

Combinatória

Mensagempor vyhonda » Sáb Nov 20, 2010 13:07

Essa é uma série do OBJETIVO, alguns não consegui resolver, help ..!

(fuvest) - De um poligono convexo P de n lados, calcular o número de poligonos convexos, cujos vértices são vértices de P.


UFMG - O Risco de contrair-se uma determinada doença é proporcional à razão entre o número de pessoas infectadas por essa doença e a população da cidade, nessa ordem. Numa cidade A de 40000 habitantes com 660 infectadas, o risco de contrair-se essa doença é 0,06.
Numa cidade que tem 2% de sua população infectada e em que a constante de proporcionalidade é igual à da cidade A, o risco de contrair-se essa doença é:


(FUVEST) Num torneio de tênis, no qual todas as partidas são eliminatórias, estão inscritos 8 jogadores. Para definir-se a primeira rodada do torneio, realiza-se um sorteio casual que divide os 8 jogadores em 4 grupos de 2 jogadores cada um.

a) No torneio estão inscritos quatro amigos A, B, C e D. Nenhum deles gostaria de enfrentar um dos outros logo na primeira rodada do torneio. Qual a probabilidade de que esse desejo seja satisfeito?
b) Sabendo-se que pelo menos um dos jogos da primeira rodada envolve 2dos 4 amigos, qual a probabilidade condicional de que A e B se enfrentam na primeira rodada?




quem puder ajudar, muito obrigado!
vyhonda
Usuário Ativo
Usuário Ativo
 
Mensagens: 24
Registrado em: Dom Jan 17, 2010 20:03
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de Materiais - Unesp
Andamento: cursando

Re: Combinatória

Mensagempor alexandre32100 » Seg Nov 22, 2010 14:42

vyhonda escreveu:(fuvest) - De um poligono convexo P de n lados, calcular o número de poligonos convexos, cujos vértices são vértices de P.

Primeira começamos com os poligonos de 3 lados (triângulos). Devemos escolher 3 vértices dos n. Isto pode ser feito de \dbinom{n}{3} maneiras. Este mesmo raciocínio vale para qualquer inteiro k com 3\le k \le n.
O número que procuramos é \displaystyle\sum_{k=3}^n \binom{n}{k}=\dbinom{n}{3}+\dbinom{n}{4}+\ldots+\dbinom{n}{n-1}+\dbinom{n}{n}.

obs: podemos simplificar esta expressão lembrando do Triângulo de Pascal. De lá temos que \displaystyle\sum_{k=0}^n \binom{n}{k}=2^n. Portanto, \displaystyle\sum_{k=3}^n \binom{n}{k}=2^n-\binom{n}{0}-\binom{n}{1}-\binom{n}{2}=2^n-1-n-\left(\dfrac{n^2-n}{2}\right)=\dfrac{2^{n+1}-n^2-n-2}{2} (se é que isto ajuda em algum ponto :-P )

vyhonda escreveu:UFMG - O Risco de contrair-se uma determinada doença é proporcional à razão entre o número de pessoas infectadas por essa doença e a população da cidade, nessa ordem. Numa cidade A de 40000 habitantes com 660 infectadas, o risco de contrair-se essa doença é 0,06.
Numa cidade que tem 2% de sua população infectada e em que a constante de proporcionalidade é igual à da cidade A, o risco de contrair-se essa doença é:

Não entendi bem a questão, mas creio que a resposta seja 2\%.

vyhonda escreveu:(FUVEST) Num torneio de tênis, no qual todas as partidas são eliminatórias, estão inscritos 8 jogadores. Para definir-se a primeira rodada do torneio, realiza-se um sorteio casual que divide os 8 jogadores em 4 grupos de 2 jogadores cada um.

a) No torneio estão inscritos quatro amigos A, B, C e D. Nenhum deles gostaria de enfrentar um dos outros logo na primeira rodada do torneio. Qual a probabilidade de que esse desejo seja satisfeito?
b) Sabendo-se que pelo menos um dos jogos da primeira rodada envolve 2dos 4 amigos, qual a probabilidade condicional de que A e B se enfrentam na primeira rodada?


a.
As possibilidades de sorteio dos grupos são \dfrac{\dbinom{8}{2}\cdot\dbinom{6}{2}\cdot\dbinom{4}{2}\cdot\dbinom{2}{2}\cdot}{4!}=105.
As possibilidades dos amigos não se enfrentarem é 2!\times2!\times2!\times2!=32.
\dfrac{105}{32}=3,28125 ou 32,81\%.
b.
To sem tempo para fazer.
Quando puder, posto o que conseguir.
Abraços.
alexandre32100
 


Voltar para Estatística

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59