por vyhonda » Sáb Nov 20, 2010 13:07
Essa é uma série do OBJETIVO, alguns não consegui resolver, help ..!
(fuvest) - De um poligono convexo P de n lados, calcular o número de poligonos convexos, cujos vértices são vértices de P.
UFMG - O Risco de contrair-se uma determinada doença é proporcional à razão entre o número de pessoas infectadas por essa doença e a população da cidade, nessa ordem. Numa cidade A de 40000 habitantes com 660 infectadas, o risco de contrair-se essa doença é 0,06.
Numa cidade que tem 2% de sua população infectada e em que a constante de proporcionalidade é igual à da cidade A, o risco de contrair-se essa doença é:
(FUVEST) Num torneio de tênis, no qual todas as partidas são eliminatórias, estão inscritos 8 jogadores. Para definir-se a primeira rodada do torneio, realiza-se um sorteio casual que divide os 8 jogadores em 4 grupos de 2 jogadores cada um.
a) No torneio estão inscritos quatro amigos A, B, C e D. Nenhum deles gostaria de enfrentar um dos outros logo na primeira rodada do torneio. Qual a probabilidade de que esse desejo seja satisfeito?
b) Sabendo-se que pelo menos um dos jogos da primeira rodada envolve 2dos 4 amigos, qual a probabilidade condicional de que A e B se enfrentam na primeira rodada?
quem puder ajudar, muito obrigado!
-
vyhonda
- Usuário Ativo

-
- Mensagens: 24
- Registrado em: Dom Jan 17, 2010 20:03
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia de Materiais - Unesp
- Andamento: cursando
por alexandre32100 » Seg Nov 22, 2010 14:42
vyhonda escreveu:(fuvest) - De um poligono convexo P de n lados, calcular o número de poligonos convexos, cujos vértices são vértices de P.
Primeira começamos com os poligonos de

lados (triângulos). Devemos escolher

vértices dos

. Isto pode ser feito de

maneiras. Este mesmo raciocínio vale para qualquer inteiro

com

.
O número que procuramos é

.
obs: podemos simplificar esta expressão lembrando do Triângulo de Pascal. De lá temos que

. Portanto,

(se é que isto ajuda em algum ponto

)
vyhonda escreveu:UFMG - O Risco de contrair-se uma determinada doença é proporcional à razão entre o número de pessoas infectadas por essa doença e a população da cidade, nessa ordem. Numa cidade A de 40000 habitantes com 660 infectadas, o risco de contrair-se essa doença é 0,06.
Numa cidade que tem 2% de sua população infectada e em que a constante de proporcionalidade é igual à da cidade A, o risco de contrair-se essa doença é:
Não entendi bem a questão, mas creio que a resposta seja

.
vyhonda escreveu:(FUVEST) Num torneio de tênis, no qual todas as partidas são eliminatórias, estão inscritos 8 jogadores. Para definir-se a primeira rodada do torneio, realiza-se um sorteio casual que divide os 8 jogadores em 4 grupos de 2 jogadores cada um.
a) No torneio estão inscritos quatro amigos A, B, C e D. Nenhum deles gostaria de enfrentar um dos outros logo na primeira rodada do torneio. Qual a probabilidade de que esse desejo seja satisfeito?
b) Sabendo-se que pelo menos um dos jogos da primeira rodada envolve 2dos 4 amigos, qual a probabilidade condicional de que A e B se enfrentam na primeira rodada?
a.
As possibilidades de sorteio dos grupos são

.
As possibilidades dos amigos não se enfrentarem é

.

ou

.
b.
To sem tempo para fazer.
Quando puder, posto o que conseguir.
Abraços.
-
alexandre32100
-
Voltar para Estatística
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Combinatória-analise combinatoria
por heloisacarvalho83 » Seg Fev 27, 2012 22:40
- 1 Respostas
- 2881 Exibições
- Última mensagem por Livia000

Qua Mai 23, 2012 00:26
Estatística
-
- combinatória
por Adilson » Sex Ago 28, 2009 13:50
- 1 Respostas
- 2135 Exibições
- Última mensagem por Molina

Sex Ago 28, 2009 21:19
Estatística
-
- Combinatória
por 2137RF » Sex Out 09, 2009 11:25
- 4 Respostas
- 3467 Exibições
- Última mensagem por shirata

Qui Nov 26, 2009 06:38
Estatística
-
- combinatória
por apoliveirarj » Dom Jul 25, 2010 16:50
- 2 Respostas
- 4874 Exibições
- Última mensagem por apoliveirarj

Qui Ago 05, 2010 19:27
Estatística
-
- Combinatória
por apoliveirarj » Sáb Ago 07, 2010 12:23
- 2 Respostas
- 2461 Exibições
- Última mensagem por apoliveirarj

Sex Ago 13, 2010 15:55
Estatística
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.