• Anúncio Global
    Respostas
    Exibições
    Última mensagem

preciso de ajuda neste problema

preciso de ajuda neste problema

Mensagempor flaviano » Qui Nov 18, 2010 23:41

Ja tentei de tudo ai só num sei se num soube fazer tentei distribuição binomial mais num consegui..
c alguem poder ajudar quero entender isso...
Anexos
Sem Título-1.jpg
flaviano
Novo Usuário
Novo Usuário
 
Mensagens: 6
Registrado em: Dom Nov 07, 2010 12:24
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: preciso de ajuda neste problema

Mensagempor alexandre32100 » Sex Nov 19, 2010 14:03

Logística (L)
40 alunos - 18 rapazes e 22 moças;
Análise de Sitemas (A):
36 alunos - 12 rapazes e 24 moças;

No total temos \dbinom{40+36}{2}=\dfrac{76\cdot75}{2}=2850 escolhas.
Podemos escolher:
  • um rapaz de L e uma moça de A;
    \dfrac{18}{40}\times\dfrac{24}{36}=\dfrac{3}{10}
  • uma moça de L e um rapaz de A.
    \dfrac{22}{40}\times\dfrac{12}{36}=\dfrac{11}{60}

\dfrac{3}{10}+\dfrac{11}{60}=\dfrac{29}{60} \text{ (A)}
alexandre32100
 

Re: preciso de ajuda neste problema

Mensagempor flaviano » Sex Nov 19, 2010 23:37

olá cara fico grato mais num consegui entende a resolução dele

como vc chegou ao resultado eu fiz exatamente igual e num seguei ao resultado séra q tive algum erro na hora de calcular explique um pouco melhor agradeço a paciencia..
flaviano
Novo Usuário
Novo Usuário
 
Mensagens: 6
Registrado em: Dom Nov 07, 2010 12:24
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: preciso de ajuda neste problema

Mensagempor alexandre32100 » Sáb Nov 20, 2010 19:28

Assim:
As possibilidades de escolher um rapaz e uma moça são:
  • escolher um rapaz da turma de Logística e uma moça de Análise;
  • ou escolher um moça da turma de Logística e uma rapaz de Análise;

Quando você quer que dois eventos aconteçam simultaneamente, um com a probabilidade de acontecer p_1 e outro com p_2, a probabilidade de que isto aconteça é de p_1\times p_2, isto explica esta parte
alexandre32100 escreveu:Podemos escolher:
  • um rapaz de L e uma moça de A;
    \dfrac{18}{40}\times\dfrac{24}{36}=\dfrac{3}{10}
  • uma moça de L e um rapaz de A.
    \dfrac{22}{40}\times\dfrac{12}{36}=\dfrac{11}{60}
.
Os professores geralmente explicam a probabilidade da forma p=\dfrac{\text{quero}}{\text{tenho}}, no caso, por exemplo de escolher uma moça na turma de logística, eu tenho 40 alunos, mas quero apenas as 22 moças, portanto a probabilidade é de \dfrac{22}{40}.

Ah! Desconsidere a parte que diz
alexandre32100 escreveu:No total temos \dbinom{40+36}{2}=\dfrac{76\cdot75}{2}=2850 escolhas.

Eu esqueci de apagá-la. Isso não "inflói nem contribói" nada na resolução.
Espero ter sido claro.
alexandre32100
 


Voltar para Estatística

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}