• Anúncio Global
    Respostas
    Exibições
    Última mensagem

inequação modular

inequação modular

Mensagempor haiashi » Qua Jun 06, 2012 00:33

Bem, aqui estou com algumas dúvidas em como prosseguir com essa questão;
Determine o gráfico da inequação | x² - 2 | - 1 > | x | - 1 .
Seria correto se eu eliminasse os dois ( -1 ) ficando assim a inequação | x² - 2 | > | x | ? Não estaria desrespeitando a inequação. Se puder fazer isso
eu encontrei algumas soluções

| x² - 2 | solução raiz quadrada de 2 e menos raiz quadrada de 2
e para | x | deram 1 e -1 e fazendo o gráfico das duas. a primeira é uma parábola e a outra é a função identidade. aí eu encontrei uma solução assim
apenas por intuição. se alguém puder me ajudar fico muito grato. a solução foi
{ x E R | x < - 2 ou x > 2}
haiashi
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Dom Mai 20, 2012 20:24
Formação Escolar: GRADUAÇÃO
Área/Curso: licenciatura em matemática
Andamento: cursando

Voltar para Sistemas de Equações

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}