por haiashi » Qua Jun 06, 2012 00:33
Bem, aqui estou com algumas dúvidas em como prosseguir com essa questão;
Determine o gráfico da inequação | x² - 2 | - 1 > | x | - 1 .
Seria correto se eu eliminasse os dois ( -1 ) ficando assim a inequação | x² - 2 | > | x | ? Não estaria desrespeitando a inequação. Se puder fazer isso
eu encontrei algumas soluções
| x² - 2 | solução raiz quadrada de 2 e menos raiz quadrada de 2
e para | x | deram 1 e -1 e fazendo o gráfico das duas. a primeira é uma parábola e a outra é a função identidade. aí eu encontrei uma solução assim
apenas por intuição. se alguém puder me ajudar fico muito grato. a solução foi
{ x E R | x < - 2 ou x > 2}
-
haiashi
- Novo Usuário

-
- Mensagens: 2
- Registrado em: Dom Mai 20, 2012 20:24
- Formação Escolar: GRADUAÇÃO
- Área/Curso: licenciatura em matemática
- Andamento: cursando
Voltar para Sistemas de Equações
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [inequação modular] DÚVIDA SIMPLES EM INEQUAÇÃO MODULAR
por brunocunha2008 » Sex Set 13, 2013 22:37
- 1 Respostas
- 7386 Exibições
- Última mensagem por Rafael Henrique

Qui Jan 03, 2019 14:39
Inequações
-
- inequação modular
por manuoliveira » Dom Ago 22, 2010 22:30
- 1 Respostas
- 3471 Exibições
- Última mensagem por Dan

Seg Ago 23, 2010 15:38
Álgebra Elementar
-
- Inequação modular
por scggomes » Qui Abr 21, 2011 17:22
- 3 Respostas
- 3204 Exibições
- Última mensagem por MarceloFantini

Qui Abr 21, 2011 20:54
Cálculo: Limites, Derivadas e Integrais
-
- Inequação Modular
por Rafael16 » Qui Mar 08, 2012 20:24
- 2 Respostas
- 2414 Exibições
- Última mensagem por Rafael16

Qui Mar 08, 2012 21:21
Funções
-
- Inequação Modular
por Rafael16 » Qui Jul 05, 2012 12:01
- 2 Respostas
- 1697 Exibições
- Última mensagem por Russman

Qui Jul 05, 2012 13:33
Funções
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
cálculo de limites
Autor:
Hansegon - Seg Ago 25, 2008 11:29
Bom dia.
Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado
\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]
Assunto:
cálculo de limites
Autor:
Molina - Seg Ago 25, 2008 13:25
Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.
Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo.
Caso ainda não tenha dado uma

, avisa que eu resolvo.
Bom estudo!
Assunto:
cálculo de limites
Autor:
Guill - Dom Abr 08, 2012 16:03

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.