• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Determinar a e b equação 2º grau

Determinar a e b equação 2º grau

Mensagempor TAE » Sex Jun 01, 2012 00:00

Boa noite, só uma pequena dúvida o porquê de não estar dando b=-2.
x^2-(3a-4b)x+(2a+b)=0. Raízes da equação 3 e 4. Determine a e b.

S=x`+x``=3+4=\frac{7}{1}=\frac{-b}{a}, portanto, \frac{b}{a}=\frac{-7}{1},logo,b=-7 , a=1
P=x`.x``=3(4)=\frac{12}{1}=\frac{c}{a} ,logo,c=12 , a=1

-(3a-4b)=-7=-3a+4b=-7
2a+b=12=b=12-2a

-3a+4(12-2a)=-7=-3a+48-8a=-7=-11a=-55=a=\frac{-55}{-11}=5

b=12-2a=b=12-2(5)=b=2

Resposta:
a=5
b=2

Valeu.
“O tolo, quando erra,queixa-se dos outros; o sábio queixa-se de si mesmo.” (Sócrates, 469-399, AC).
TAE
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 30
Registrado em: Ter Mar 20, 2012 20:57
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: TÉC. ELETRÔNICA
Andamento: formado

Re: Determinar a e b equação 2º grau

Mensagempor Russman » Sex Jun 01, 2012 01:34

Você deve montar um sistema!

\left\{\begin{matrix}
x_{1}+x_{2}="\frac{-b}{a}"=\frac{(3a-4b)}{1}\Rightarrow 7=(3a-4b) (1)\\ 
x_{1}.x_{2}="\frac{c}{a}"=\frac{(2a+b)}{1}\Rightarrow 12=2a+b (2)
\end{matrix}\right.

Agora, resolva-o!

4(2)+(1) = 48+7\Rightarrow 8a+4b+3a-4b=55\Rightarrow a=5

b = 12-2a \Rightarrow b=12-10=2\Rightarrow b=2

Veja que aplicando estes valores na equação obtemos

{x}^{2}-7x+12=0\Rightarrow (x-3)(x-4) = 0

cuja solução é (3,4), como se qeria!

Você fez certo! Porqe teria de calcular b=-2?
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: Determinar a e b equação 2º grau

Mensagempor TAE » Sex Jun 01, 2012 16:57

Foi mal pela, confusão é o que o livro está dando b=-2, então o gabarito deve estar errado, muito obrigado pela ajuda.
“O tolo, quando erra,queixa-se dos outros; o sábio queixa-se de si mesmo.” (Sócrates, 469-399, AC).
TAE
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 30
Registrado em: Ter Mar 20, 2012 20:57
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: TÉC. ELETRÔNICA
Andamento: formado


Voltar para Sistemas de Equações

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?