• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Método de Jacob] - Sistemas Lineares

[Método de Jacob] - Sistemas Lineares

Mensagempor Bruhh » Seg Mar 19, 2012 20:34

Olá boa noite.

Gostaria muito que alguém me ajudasse na questão seguinte.
- As quatro notas dos seis alunos estão abaixo, com as médias ponderadas dos quatro primeiros:

Aluno A: N1=5 N2=5 N3=1 N4=0 Média= 3

Aluno B: N1=1 N2=2 N3=2 N4=6 Média= 2,65

Aluno C: N1=3 N2=2 N3=0 N4=1 Média= 1,45

Aluno D: N1=1 N2=0 N3=4 N4=1 Média= 1,35

Aluno E: N1=4 N2=4 N3=4 N4=4 Média= ?

Aluno F: N1=5 N2=6 N3=3 N4=3 Média= ?

**Calcular os pesos usados e as médias dos alunos E e F.
RESPOSTA: A=0,15 B=0,4 C=0,25 D=0,2
Méd. E = 4,0
Méd. F = 4,5

Então eu comecei montando um sistema:
5A + 5B + C = 3 onde A = (3 - 5B - C)/3
A + 2B + 2C + 6D = 2,65 B = (2,65 - A - 2C -6D)/2
3A + 2B + D = 1,45 D = (1,45 - 3A - 2B)
A + 4C + D = 1,35 C = (1,35 - A - D)/4


Como notei que A + B + C + D = 1
utilizei para Xo A=B=C=D=0,25

Quando calculei o critério de convergencia (Sassenfeld) é que os meus problemas começaram.
Neste formato que fiz primeiramente não consegui a convergência garantida.
Mudei linhas e colunas de posição e também não consegui a convergência.
Tentei calcular mesmo sem a garantia da convergência começando com os pesos iguais a 0,25 mas não
obtive o resultado correto.

O que está errado? Como rearranjar o sistema para garantir a convergência??
O que fazer??
Obrigada
Bruhh
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 47
Registrado em: Seg Mar 01, 2010 14:30
Formação Escolar: GRADUAÇÃO
Área/Curso: Bacharelado em Eng. Química
Andamento: cursando

Voltar para Sistemas de Equações

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?