por Andreza » Qui Nov 24, 2011 13:11
Dadas as equações modulares
E1: | 4 – 3x|= 3 - 5x e E2: |2x² - 1 | - 3 = 0
O exercício pediu o produto de suas raízes reais.
Eu resolvi as duas equações e encontrei como raízes
E1: -

e

E2: + ou -
![\sqrt[]{2} \sqrt[]{2}](/latexrender/pictures/f21662d1cabab6e8b273a4b6f1cd663a.png)
E como raiz de 2 é um número irracional entao descartei ela na hora defazer o produto e encontrei o produto -

No gabarito a resposta certa é 1.
Desde já agradeço!!!!

-
Andreza
- Colaborador Voluntário

-
- Mensagens: 100
- Registrado em: Sáb Out 22, 2011 11:10
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Licenc. Plena Matemática
- Andamento: formado
por LuizAquino » Seg Nov 28, 2011 20:55
Andreza escreveu:Dadas as equações modulares
E1: | 4 – 3x|= 3 - 5x e E2: |2x² - 1 | - 3 = 0
O exercício pediu o produto de suas raízes reais.
Andreza escreveu:Eu resolvi as duas equações e encontrei como raízes
E1:

e

E2: + ou -

Ok, essas são as
raízes reais.
Andreza escreveu:E como raiz de 2 é um número irracional entao descartei ela na hora defazer o produto e encontrei o produto

Completamente errado!
Todo número irracional é também um número real.
O produto será:

Andreza escreveu:No gabarito a resposta certa é 1.
Houve um erro no gabarito.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
Voltar para Sistemas de Equações
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Equações Modulares
por Andreza » Qua Fev 22, 2012 12:35
- 1 Respostas
- 1130 Exibições
- Última mensagem por timoteo

Qua Fev 22, 2012 15:51
Sistemas de Equações
-
- Inequacoes Modulares
por rousseau » Qui Abr 12, 2012 23:15
- 1 Respostas
- 1598 Exibições
- Última mensagem por rousseau

Qui Abr 12, 2012 23:26
Álgebra Elementar
-
- inequações modulares
por Alerecife » Ter Set 25, 2012 22:37
- 1 Respostas
- 1618 Exibições
- Última mensagem por MarceloFantini

Ter Set 25, 2012 23:20
Funções
-
- Inequações Modulares
por augustokuc » Qua Set 11, 2013 18:32
- 0 Respostas
- 1341 Exibições
- Última mensagem por augustokuc

Qua Set 11, 2013 18:32
Inequações
-
- INEQUAÇÕES MODULARES
por petras » Ter Jun 14, 2016 17:15
- 1 Respostas
- 3028 Exibições
- Última mensagem por petras

Seg Out 31, 2016 21:15
Inequações
Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes
Assunto:
Unesp - 95 Números Complexos
Autor:
Alucard014 - Dom Ago 01, 2010 18:22
(UNESP - 95) Seja L o Afixo de um Número complexo

em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.
Assunto:
Unesp - 95 Números Complexos
Autor:
MarceloFantini - Qui Ago 05, 2010 17:27
Seja

o ângulo entre o eixo horizontal e o afixo

. O triângulo é retângulo com catetos

e

, tal que

. Seja

o ângulo complementar. Então

. Como

, o ângulo que o afixo

formará com a horizontal será

, mas negativo pois tem de ser no quarto quadrante. Se

, então

. Como módulo é um:

.
Logo, o afixo é

.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.