• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Sistemas Lineares] Precisão do Método de Gauss-Seidel

[Sistemas Lineares] Precisão do Método de Gauss-Seidel

Mensagempor VFernandes » Qui Out 06, 2011 13:50

Caros amigos, primeiramente peço desculpas se o assunto foge um pouco do tema, mas foi a seção mais adequada que encontrei.
Tenho o seguinte problema em minhas mãos:
\begin{pmatrix}
   4 & -1 & 0  \\
   -2 & 3 & -1 \\ 
   -1 & -3 & 5
\end{pmatrix} \begin{pmatrix}
   {x}_{1}} \\
   {x}_{2}} \\ 
   {x}_{3}}
\end{pmatrix} =  \begin{pmatrix}
   2\\
   0 \\ 
   1
\end{pmatrix}
Calcule uma iteração por Gauss-Seidel, partindo de = (0,0,0) e estime quantas iterações são necessárias para que se atinja a precisão \epsilon = 0.0001
Bom, vamos lá:

{{x}_{1}}^{1} = \frac{1}{4}(2-(-1)\times0-0\times0)) = 0,5
{{x}_{2}}^{1} = \frac{1}{3}(0-(-2)\times0,5-(-1)\times0)) = 0,33
{{x}_{3}}^{1} = \frac{1}{5}(1-(-1)\times0,5-(-3)\times0,33)) = 0,5

\beta_1 = \frac{1}{4}(1+0) = 0,25
\beta_ = \frac{1}{3}(2\times0,25+1) = 0,5
\beta_3 = \frac{1}{5}(2\times0,25+3\times0,5) = 0,4 portanto,
M = 0.5 (maior dos betas)
Até aqui, sem problemas, a questão vem agora:
Sabemos que:
|x^*-x^k|\leq M^k max|x^*-x^0| portanto,
0.0001\leq 0,5^k |x^*-0|
o que não nos ajuda em muito, pois não sabemos x* (valor exato de x)
Alguma alma caridosa saberia como lidar com isso? Será que temos que delimitar um intervalo onde está contida a solução do sistema?
VFernandes
Novo Usuário
Novo Usuário
 
Mensagens: 6
Registrado em: Sex Mar 04, 2011 16:47
Formação Escolar: GRADUAÇÃO
Área/Curso: Eng. Elétrica
Andamento: cursando

Voltar para Sistemas de Equações

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: função demanda
Autor: ssousa3 - Dom Abr 03, 2011 20:55

alguém poderia me ajudar nesse exercício aqui Uma loja de CDs adquire cada unidade por R$20,00 e a revende por R$30,00. Nestas condições,
a quantidade mensal que consegue vender é 500 unidades. O proprietário estima que, reduzindo o preço para R$28,00, conseguirá vender 600 unidades por mês.
a) Obtenha a função demanda, supondo ser linear

Eu faço ensino médio mas compro apostilas de concursos para me preparar para mercado de trabalho e estudar sozinho não é fácil. Se alguém puder me ajudar aqui fico grato


Assunto: função demanda
Autor: ssousa3 - Seg Abr 04, 2011 14:30

Gente alguém por favor me ensine a calcular a fórmula da função demanda *-)